{"title":"Construction of Long-Term Transmembrane Pressure Estimation Model for a Membrane Bioreactor","authors":"Kyung-mo Sung, H. Kaneko, K. Funatsu","doi":"10.2751/JCAC.13.10","DOIUrl":"https://doi.org/10.2751/JCAC.13.10","url":null,"abstract":"Membrane bioreactor (MBR) は工場排水や生活下水などの汚水を微生物で分解し、その後処理水と微生物を膜で分離する装置のことである。短時間かつ省スペースでの水処理が可能であるため、ビルや工場などにMBRを分散設置して無人運転を行うことは水不足問題の解決策として注目されている。しかし、膜に微生物や固形物などが堆積することでファウリングが発生し、膜差圧の上昇および運転コストの上昇は大きな課題となっており、膜差圧が一定水準に到達すると膜を薬品で洗浄し膜に付着した堆積物を除去しなければならない。そこで本研究では膜洗浄時期の推定のために1週間以上の長期にわたり、精度良く膜差圧を予測することを試みた。水質以外の変数から膜抵抗(resistance, R)を予測するモデルと水質関連変数からファウラントの堆積しやすさ(deposition rate, DR)を予測するモデルを構築し、それぞれのモデルから長期膜差圧予測を行う手法を提案した。モデル構築手法として線形手法であるpartial least squares (PLS)法と非線形手法であるsupport vector regression (SVR)法を使用した。Rを予測するモデルでは、PLS法とSVR法を用いた場合の両方とも高い予測性能を示したが、DRを予測するモデルでは、PLS法よりSVR法を用いた場合の方が予測性能は高かった。その後長期的に膜差圧を予測したが、Rを予測するモデルよりDRを予測するモデルを用いた方が精度良く予測できることが確認された。提案手法を活用することで、MBRの分散設置や無人運転化の拡大が期待される。","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"13 1","pages":"10-19"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Prediction Model for Mutagenicity - Validation of Ames Test Data","authors":"Masamoto Arakawa, K. Funatsu","doi":"10.2751/JCAC.13.20","DOIUrl":"https://doi.org/10.2751/JCAC.13.20","url":null,"abstract":"","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"13 1","pages":"20-28"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Powerful Integrative Tool Combining Structure Generator and Chemical Space Visualization","authors":"K. Hasegawa, K. Funatsu","doi":"10.2751/JCAC.13.1","DOIUrl":"https://doi.org/10.2751/JCAC.13.1","url":null,"abstract":"本研究では、薬物設計における2つの基本的な手法を紹介する。すなわち、構造発生と化学構造図示化である。構造発生は、リード最適化で利用され、構造ホッピングに有用である。我々は、定量的構造活性相関に基づく構造発生に注目する。すなわち、逆定量的構造活性相関手法である。逆定量的構造活性相関手法の目的は、定量的構造活性相関モデルから生物活性が高いと予測される化学構造を提案することである。化学構造図示化は、リード最適化の別の重要な手法である。化学構造図示化は、合成化合物が化学空間上どこに存在しているかということ、あるいは、どこまで合成を行えばリード最適化が達成できるかを示す良いコンパスとなる。図示化は、複数のターゲットタンパク質に対する分子選択性を理解するのにも役立つ。一般に、化合物が複数のターゲットタンパク質に対して生物活性を示すと望ましくない副作用を引き起こす可能性があるので、化学構造図示化は安全性の面からも非常に価値がある。われわれの研究を含めて、2つの基本的な手法である構造発生と化学構造図示化を、それぞれ簡単に総説する。","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"13 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Consideration of Soft Sensor Methods Based on Time Difference and Discussion on Intervals of Time Difference","authors":"H. Kaneko, K. Funatsu","doi":"10.2751/JCAC.13.29","DOIUrl":"https://doi.org/10.2751/JCAC.13.29","url":null,"abstract":"In chemical plants, soft sensors have been widely used to estimate difficult-to-measure process variables online. The predictive accuracy of soft sensors decreases due to changes in the state of chemical plants, and soft sensor models based on time difference (TD) have been constructed for reducing the effects of deterioration with age such as the drift. However, details on models based on TD (TD models) remain to be clarified. In this study, therefore, TD models were discussed in terms of noise and variance in data, auto-correlation in process variables, degree of model accuracy, and so on. Then, we theoretically clarified and formulated the difference of predictive accuracy between normal models and TD models. The relationships and the formulas of TD were verified through the analysis of simulation data. Furthermore, we analyzed dynamic simulation data with considering observed disturbances and unobserved disturbances, and confirmed that predictive accuracy of TD models increased by setting appropriate intervals of TD.","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"13 1","pages":"29-43"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of Mutagenicity of Organic Molecules by Ensemble Learning","authors":"Masamoto Arakawa, K. Funatsu","doi":"10.2751/JCAC.12.26","DOIUrl":"https://doi.org/10.2751/JCAC.12.26","url":null,"abstract":"本研究では、有機化合物の変異原性を予測するためのクラス分類モデルの構築を行った。変異原性を評価するための標準的な方法である復帰突然変異試験を対象とし、その評価結果を高い精度で予測することの出来るモデルの構築を目指した。クラス分類モデル構築のための手法として、複数のSupport Vector Machine(SVM)モデルをサブモデルとして構築し、それらを組み合わせることで予測を行うアンサンブル手法を提案する。データセットから一部の化合物および構造記述子をランダムに抜き出し、SVMを用いてサブモデルを構築する。このとき、SVMのパラメータについても乱数によって無作為に決定する。この操作を複数回繰り返した後、精度の高いサブモデルの予測結果を統合することで変異原性の予測を行う。Hansenら[K. Hansen, et al., J. Chem. Inf. Model., 49, 2077-2081] が収集・整理した、6,512化合物からなる復帰突然変異試験のデータセットを用い、モデルの構築および評価を行った。その結果、テストセットに対する予測正解率79.6%のモデルを構築することに成功した。これは、通常のSVMによって得られるモデルと比較し高い精度を示すものであった。また、The Area Under ROC-Curve(AUC)は0.866であり、Hansenらの結果と同等以上の結果であることが確認された。これらのことから、変異原性の予測にあたってはSVMおよびアンサンブルモデルを用いることが有力であるとの結論が得られた。","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"12 1","pages":"26-36"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of SOAP API Service in Mass Spectral Database MassBank","authors":"H. Horai, Yoshito Nihei, T. Nishioka","doi":"10.2751/JCAC.12.11","DOIUrl":"https://doi.org/10.2751/JCAC.12.11","url":null,"abstract":"質量分析スペクトルデータベースMassBankにおいてSOAP APIサービスを新たに開発した。このサービスを用いることで、任意のアプリケーション・ソフトウェアからMassBankを利用することが可能となる。すなわち、ユーザの意図どおりにMassBankが提供する機能を組み合わせるプログラム、大量データについて一連の処理を繰り返し実行するプログラム、他のインターネットサービスと連携するプログラム等をユーザが作成することが可能となる。また、既存の質量分析解析ツールにMassBank検索機能を付け加えることも容易になる。MassBankはインターネット上の分散データベースであるが、本SOAP APIを用いてmassbank.jpにアクセスすることで、すべての分散データベースサーバに一括して検索することが可能であり、あるスペクトルデータがどのサーバに存在するかを意識せずにそれを取得することも可能である。","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"12 1","pages":"11-25"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualization and Chemical Interpretation of Multi-Target Structure-Activity Relationships Using SOMPLS","authors":"清 長谷川, 船津 公人","doi":"10.2751/JCAC.12.47","DOIUrl":"https://doi.org/10.2751/JCAC.12.47","url":null,"abstract":"In quantitative structure-activity relationships (QSAR), partial least squares (PLS) are of particular interest as a statistical method. Since successful applications of PLS to QSAR data set, PLS has evolved for coping with more demands associated with complex data structures. Especially, PLS variants focusing on visualization and chemical interpretation are highly desirable in modeling multi-target structure-activity relationships. In this paper, we employed the self-organized PLS (SOMPLS) approach to predict multiple inhibitory activities against three serine protease receptors (Thrombin, Trypsin and Factor Xa). Volsurf descriptors were used as chemical descriptors. From the SOMPLS analysis, we could catch rough trends about what chemical features are essential to each serine protease protein. Their chemical features could be successfully validated from X-ray crystal structures and the corresponding alignment residues.","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"37 1","pages":"47-53"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toshiaki Kusaba, S. Miyamoto, Masamoto Arakawa, K. Funatsu
{"title":"Development of System for Selecting Optimal Combination of Zeolite and Solvent for Simulated Moving Bed Processes","authors":"Toshiaki Kusaba, S. Miyamoto, Masamoto Arakawa, K. Funatsu","doi":"10.2751/JCAC.12.54","DOIUrl":"https://doi.org/10.2751/JCAC.12.54","url":null,"abstract":"A prediction system for the quantity of an adsorbed organic compound on zeolite has been developed. The regression model useful for a various combinations of zeolite and solvent has readily been developed using genetic algorithm partial least squares (GAPLS). In the models, the molecular descriptor of the organic compound is used as an explanatory variable and the partition coefficient is used as an objective variable. As a result, the system can provide accurate predictions for almost of all combinations. Additionally, with the GA-PLS method, we applied the system to selecting the optimal combination of zeolite and solvent for simulated moving bed (SMB) processes. The validity of the system was evaluated for separation of 2-adamantanone and 2-adamantanol as a representative case. The combinations selected by the system were almost the same as those selected by experiment. This system is intended to shorten the time for selecting the optimal zeolite/solvent combination and to ensure good selection accuracy for developing SMB methods.","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"12 1","pages":"54-64"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Quality in Fruit by NIR Spectrum","authors":"Yosuke Yamashita, Masamoto Arakawa, K. Funatsu","doi":"10.2751/JCAC.12.37","DOIUrl":"https://doi.org/10.2751/JCAC.12.37","url":null,"abstract":"りんごについて測定された近赤外スペクトル用いて、内部品質である糖度および蜜・褐変の有無を推定する情報化学的手法の確立を行った。糖度に関しては、近赤外スペクトルを説明変数、糖度を目的変数とした回帰モデルを構築した。遺伝的アルゴリズムを応用した領域選択手法であるGenetic Algorithm-based Wavelength Selection (GAWLS)法を適用し、従来手法であるGenetic Algorithm-based Partial Least Squares (GAPLS)法によるモデルとの比較を行った。その結果、GAWLS法によるモデルの精度は従来手法と同程度であったが、糖度を説明するために重要である波長領域を明確に特定することが可能であることが示された。蜜・褐変の有無に関しては、GAWLS法をk-Nearest Neighbor (k-NN)法と組み合わせることでクラス分類問題へと適用する新規手法を提案し、k-NN法およびSupport Vector Machine (SVM)によるモデルとの比較を行った。その結果、糖度に関する解析と同様に、GAWLS法は重要な波長領域を明確に求めることが可能であった。以上の結果から、GAWLS法は近赤外スペクトルを用いた果物の内部品質解析において有用な手法であるとの結論が得られた。","PeriodicalId":41457,"journal":{"name":"Journal of Computer Aided Chemistry","volume":"12 1","pages":"37-46"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2751/JCAC.12.37","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69254860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}