Syed Shariyar Murtaza, A. Hamou-Lhadj, Wael Khreich, Mario Couture
{"title":"Total ADS: Automated Software Anomaly Detection System","authors":"Syed Shariyar Murtaza, A. Hamou-Lhadj, Wael Khreich, Mario Couture","doi":"10.1109/SCAM.2014.37","DOIUrl":"https://doi.org/10.1109/SCAM.2014.37","url":null,"abstract":"When a software system starts behaving abnormally during normal operations, system administrators resort to the use of logs, execution traces, and system scanners (e.g., anti-malwares, intrusion detectors, etc.) to diagnose the cause of the anomaly. However, the unpredictable context in which the system runs and daily emergence of new software threats makes it extremely challenging to diagnose anomalies using current tools. Host-based anomaly detection techniques can facilitate the diagnosis of unknown anomalies but there is no common platform with the implementation of such techniques. In this paper, we propose an automated anomaly detection framework (Total ADS) that automatically trains different anomaly detection techniques on a normal trace stream from a software system, raise anomalous alarms on suspicious behaviour in streams of trace data, and uses visualization to facilitate the analysis of the cause of the anomalies. Total ADS is an extensible Eclipse-based open source framework that employs a common trace format to use different types of traces, a common interface to adapt to a variety of anomaly detection techniques (e.g., HMM, sequence matching, etc.). Our case study on a modern Linux server shows that Total ADS automatically detects attacks on the server, shows anomalous paths in traces, and provides forensic insights.","PeriodicalId":407060,"journal":{"name":"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132485721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"C/C++ Thread Safety Analysis","authors":"DeLesley S. Hutchins, A. Ballman, D. Sutherland","doi":"10.1109/SCAM.2014.34","DOIUrl":"https://doi.org/10.1109/SCAM.2014.34","url":null,"abstract":"Writing multithreaded programs is hard. Static analysis tools can help developers by allowing threading policies to be formally specified and mechanically checked. They essentially provide a static type system for threads, and can detect potential race conditions and deadlocks. This paper describes Clang Thread Safety Analysis, a tool which uses annotations to declare and enforce thread safety policies in C and C++ programs. Clang is a production-quality C++ compiler which is available on most platforms, and the analysis can be enabled for any build with a simple warning flag: -Wthread-safety. The analysis is deployed on a large scale at Google, where it has provided sufficient value in practice to drive widespread voluntary adoption. Contrary to popular belief, the need for annotations has not been a liability, and even confers some benefits with respect to software evolution and maintenance.","PeriodicalId":407060,"journal":{"name":"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124248467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuying Liang, Weibin Sun, M. Might, Andrew W. Keep, David Van Horn
{"title":"Pruning, Pushdown Exception-Flow Analysis","authors":"Shuying Liang, Weibin Sun, M. Might, Andrew W. Keep, David Van Horn","doi":"10.1109/SCAM.2014.44","DOIUrl":"https://doi.org/10.1109/SCAM.2014.44","url":null,"abstract":"Statically reasoning in the presence of exceptions and about the effects of exceptions is challenging: exception-flows are mutually determined by traditional control-flow and points-to analyses. We tackle the challenge of analyzing exception-flows from two angles. First, from the angle of pruning control-flows (both normal and exceptional), we derive a pushdown framework for an object-oriented language with full-featured exceptions. Unlike traditional analyses, it allows precise matching of throwers to catchers. Second, from the angle of pruning points-to information, we generalize abstract garbage collection to object-oriented programs and enhance it with liveness analysis. We then seamlessly weave the techniques into enhanced reach ability computation, yielding highly precise exception-flow analysis, without becoming intractable, even for large applications. We evaluate our pruned, pushdown exception-flow analysis, comparing it with an established analysis on large scale standard Java benchmarks. The results show that our analysis significantly improves analysis precision over traditional analysis within a reasonable analysis time.","PeriodicalId":407060,"journal":{"name":"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121664038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SENSA: Sensitivity Analysis for Quantitative Change-Impact Prediction","authors":"Haipeng Cai, Siyuan Jiang, Raúl A. Santelices, Ying-Jie Zhang, Yiji Zhang","doi":"10.1109/SCAM.2014.25","DOIUrl":"https://doi.org/10.1109/SCAM.2014.25","url":null,"abstract":"Sensitivity analysis determines how a system responds to stimuli variations, which can benefit important software-engineering tasks such as change-impact analysis. We present SENSA, a novel dynamic-analysis technique and tool that combines sensitivity analysis and execution differencing to estimate the dependencies among statements that occur in practice. In addition to identifying dependencies, SENSA quantifies them to estimate how much or how likely a statement depends on another. Quantifying dependencies helps developers prioritize and focus their inspection of code relationships. To assess the benefits of quantifying dependencies with SENSA, we applied it to various statements across Java subjects to find and prioritize the potential impacts of changing those statements. We found that SENSA predicts the actual impacts of changes to those statements more accurately than static and dynamic forward slicing. Our SENSA prototype tool is freely available for download.","PeriodicalId":407060,"journal":{"name":"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123281644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}