Total ADS:自动软件异常检测系统

Syed Shariyar Murtaza, A. Hamou-Lhadj, Wael Khreich, Mario Couture
{"title":"Total ADS:自动软件异常检测系统","authors":"Syed Shariyar Murtaza, A. Hamou-Lhadj, Wael Khreich, Mario Couture","doi":"10.1109/SCAM.2014.37","DOIUrl":null,"url":null,"abstract":"When a software system starts behaving abnormally during normal operations, system administrators resort to the use of logs, execution traces, and system scanners (e.g., anti-malwares, intrusion detectors, etc.) to diagnose the cause of the anomaly. However, the unpredictable context in which the system runs and daily emergence of new software threats makes it extremely challenging to diagnose anomalies using current tools. Host-based anomaly detection techniques can facilitate the diagnosis of unknown anomalies but there is no common platform with the implementation of such techniques. In this paper, we propose an automated anomaly detection framework (Total ADS) that automatically trains different anomaly detection techniques on a normal trace stream from a software system, raise anomalous alarms on suspicious behaviour in streams of trace data, and uses visualization to facilitate the analysis of the cause of the anomalies. Total ADS is an extensible Eclipse-based open source framework that employs a common trace format to use different types of traces, a common interface to adapt to a variety of anomaly detection techniques (e.g., HMM, sequence matching, etc.). Our case study on a modern Linux server shows that Total ADS automatically detects attacks on the server, shows anomalous paths in traces, and provides forensic insights.","PeriodicalId":407060,"journal":{"name":"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Total ADS: Automated Software Anomaly Detection System\",\"authors\":\"Syed Shariyar Murtaza, A. Hamou-Lhadj, Wael Khreich, Mario Couture\",\"doi\":\"10.1109/SCAM.2014.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a software system starts behaving abnormally during normal operations, system administrators resort to the use of logs, execution traces, and system scanners (e.g., anti-malwares, intrusion detectors, etc.) to diagnose the cause of the anomaly. However, the unpredictable context in which the system runs and daily emergence of new software threats makes it extremely challenging to diagnose anomalies using current tools. Host-based anomaly detection techniques can facilitate the diagnosis of unknown anomalies but there is no common platform with the implementation of such techniques. In this paper, we propose an automated anomaly detection framework (Total ADS) that automatically trains different anomaly detection techniques on a normal trace stream from a software system, raise anomalous alarms on suspicious behaviour in streams of trace data, and uses visualization to facilitate the analysis of the cause of the anomalies. Total ADS is an extensible Eclipse-based open source framework that employs a common trace format to use different types of traces, a common interface to adapt to a variety of anomaly detection techniques (e.g., HMM, sequence matching, etc.). Our case study on a modern Linux server shows that Total ADS automatically detects attacks on the server, shows anomalous paths in traces, and provides forensic insights.\",\"PeriodicalId\":407060,\"journal\":{\"name\":\"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCAM.2014.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCAM.2014.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

当软件系统在正常操作期间开始表现异常时,系统管理员借助于日志、执行跟踪和系统扫描器(例如,反恶意软件、入侵探测器等)来诊断异常的原因。然而,系统运行的不可预测的环境和每天出现的新软件威胁使得使用现有工具诊断异常非常具有挑战性。基于主机的异常检测技术可以方便地诊断未知异常,但目前还没有实现这种技术的通用平台。在本文中,我们提出了一个自动异常检测框架(Total ADS),该框架可以在软件系统的正常跟踪流上自动训练不同的异常检测技术,对跟踪数据流中的可疑行为发出异常警报,并使用可视化来方便分析异常原因。Total ADS是一个可扩展的基于eclipse的开放源码框架,它使用通用的跟踪格式来使用不同类型的跟踪,使用通用的接口来适应各种异常检测技术(例如,HMM、序列匹配等)。我们对现代Linux服务器的案例研究表明,Total ADS会自动检测服务器上的攻击,在跟踪中显示异常路径,并提供取证见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total ADS: Automated Software Anomaly Detection System
When a software system starts behaving abnormally during normal operations, system administrators resort to the use of logs, execution traces, and system scanners (e.g., anti-malwares, intrusion detectors, etc.) to diagnose the cause of the anomaly. However, the unpredictable context in which the system runs and daily emergence of new software threats makes it extremely challenging to diagnose anomalies using current tools. Host-based anomaly detection techniques can facilitate the diagnosis of unknown anomalies but there is no common platform with the implementation of such techniques. In this paper, we propose an automated anomaly detection framework (Total ADS) that automatically trains different anomaly detection techniques on a normal trace stream from a software system, raise anomalous alarms on suspicious behaviour in streams of trace data, and uses visualization to facilitate the analysis of the cause of the anomalies. Total ADS is an extensible Eclipse-based open source framework that employs a common trace format to use different types of traces, a common interface to adapt to a variety of anomaly detection techniques (e.g., HMM, sequence matching, etc.). Our case study on a modern Linux server shows that Total ADS automatically detects attacks on the server, shows anomalous paths in traces, and provides forensic insights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信