Francesco Di Virgilio, Valentina Vultaggio-Poma, Mario Tarantini, Anna Lisa Giuliani
{"title":"Overview of the role of purinergic signaling and insights into its role in cancer therapy","authors":"Francesco Di Virgilio, Valentina Vultaggio-Poma, Mario Tarantini, Anna Lisa Giuliani","doi":"10.1016/j.pharmthera.2024.108700","DOIUrl":"10.1016/j.pharmthera.2024.108700","url":null,"abstract":"<div><p>Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of “purinergic immune checkpoint” (PIC) in cancer therapy.</p><p>In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy.</p><p>This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"262 ","pages":"Article 108700"},"PeriodicalIF":12.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163725824001207/pdfft?md5=a1daa6b93f0294c43639514fa72fb4a9&pid=1-s2.0-S0163725824001207-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tissue-specific activation of insulin signaling as a potential target for obesity-related metabolic disorders","authors":"Hideyuki Okuma, Kyoichiro Tsuchiya","doi":"10.1016/j.pharmthera.2024.108699","DOIUrl":"10.1016/j.pharmthera.2024.108699","url":null,"abstract":"<div><p>The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this “healthy adipose tissue expansion” by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"262 ","pages":"Article 108699"},"PeriodicalIF":12.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163725824001190/pdfft?md5=e581979ebbd453ee2ff079fb7585ccff&pid=1-s2.0-S0163725824001190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Entering the TiME machine: How age-related changes in the tumor immune microenvironment impact melanoma progression and therapy response","authors":"Alexis E. Carey , Ashani T. Weeraratna","doi":"10.1016/j.pharmthera.2024.108698","DOIUrl":"10.1016/j.pharmthera.2024.108698","url":null,"abstract":"<div><p>Melanoma is the deadliest form of skin cancer in the United States, with its incidence rates rising in older populations. As the immune system undergoes age-related changes, these alterations can significantly influence tumor progression and the effectiveness of cancer treatments. Recent advancements in understanding immune checkpoint molecules have paved the way for the development of innovative immunotherapies targeting solid tumors. However, the aging tumor microenvironment can play a crucial role in modulating the response to these immunotherapeutic approaches. This review seeks to examine the intricate relationship between age-related changes in the immune system and their impact on the efficacy of immunotherapies, particularly in the context of melanoma. By exploring this complex interplay, we hope to elucidate potential strategies to optimize treatment outcomes for older patients with melanoma, and draw parallels to other cancers.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"262 ","pages":"Article 108698"},"PeriodicalIF":12.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji Zhang , Xinyu Xu , Hongwei Deng , Li Liu , Yuancai Xiang , Jianguo Feng
{"title":"Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing","authors":"Ji Zhang , Xinyu Xu , Hongwei Deng , Li Liu , Yuancai Xiang , Jianguo Feng","doi":"10.1016/j.pharmthera.2024.108697","DOIUrl":"10.1016/j.pharmthera.2024.108697","url":null,"abstract":"<div><p>Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative <em>cis</em>-splicing (ACS), alternative <em>trans</em>-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through <em>cis-</em>acting regulatory elements and <em>trans</em>-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on <em>cis</em>-acting regulatory elements, <em>trans</em>-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"261 ","pages":"Article 108697"},"PeriodicalIF":12.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current state and novel outlook on prevention and treatment of rising antibiotic resistance in urinary tract infections","authors":"","doi":"10.1016/j.pharmthera.2024.108688","DOIUrl":"10.1016/j.pharmthera.2024.108688","url":null,"abstract":"<div><p>Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens <em>Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae</em> and <em>Enterococcus faecalis</em>, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of β-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"261 ","pages":"Article 108688"},"PeriodicalIF":12.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163725824001086/pdfft?md5=04c16e2d669acf095ccda39eb8fb74ad&pid=1-s2.0-S0163725824001086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azizah Ugusman , Nur Syahidah Nor Hisam , Nur Syakirah Othman , Nur Najmi Mohamad Anuar , Adila A. Hamid , Jaya Kumar , Maisarah Md Razmi , Amilia Aminuddin
{"title":"Pharmacological interventions for intraplaque neovascularization in atherosclerosis","authors":"Azizah Ugusman , Nur Syahidah Nor Hisam , Nur Syakirah Othman , Nur Najmi Mohamad Anuar , Adila A. Hamid , Jaya Kumar , Maisarah Md Razmi , Amilia Aminuddin","doi":"10.1016/j.pharmthera.2024.108685","DOIUrl":"10.1016/j.pharmthera.2024.108685","url":null,"abstract":"<div><p>Advanced atherosclerosis is linked to plaque instability, which can result in rupture and the onset of a heart attack. Evidence gathered from human atheroma plaques indicates that intraplaque neovascularization poses a risk to plaque stability and may lead to plaque hemorrhage. Hence, targeting the neovascularization within the atheroma plaque has the potential to mitigate the plaque's vulnerability. While neovascularization has been extensively explored in the context of cancer, research on pharmacological inhibition of this phenomenon in atherosclerosis remains limited. This systematic review aimed to comprehensively assess current and emerging pharmacological interventions for inhibiting intraplaque neovascularization in preclinical settings. Electronic databases (Web of Science, PubMed, Scopus, and Ovid) were searched from January 2013 until February 1, 2024. Preclinical studies reporting the effect of any pharmacological interventions targeting intraplaque neovascularization were included. A total of 10 articles involving in vivo animal studies were eligible for inclusion, with five of them incorporating in vitro experiments to complement their in vivo findings. The pharmacological interventions studied were axitinib, ghrelin, K5, rosuvastatin, atorvastatin, 3PO, everolimus, melatonin, Si-Miao-Yong-A, and protocatechuic aldehyde. All the interventions showed a positive impact in inhibiting intraplaque neovascularization in various atherosclerotic animal models through various signaling pathways. This review provides valuable insights into pharmacological approaches to attenuate intraplaque neovascularization that could serve as a promising therapeutic avenue to enhance plaque stability.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"261 ","pages":"Article 108685"},"PeriodicalIF":12.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vitamins and fatty acids against chemotherapy-induced intestinal mucositis","authors":"","doi":"10.1016/j.pharmthera.2024.108689","DOIUrl":"10.1016/j.pharmthera.2024.108689","url":null,"abstract":"<div><p>Chemotherapy has allowed an increase in cancer survivorship, but it causes important adverse effects. Mucositis affecting the gastrointestinal tract is one of the main problems acutely caused by many antineoplastic drugs, such as 5-fluorouracil or methotrexate. Mucositis may cause pain, diarrhea, anorexia, weight loss, systemic infections and even death. This narrative review focuses on intestinal mucositis and the role that some nutraceuticals, namely vitamins (both lipid- and water-soluble) as well as fatty acids (FAs) and lipid-based products, can have in it. In preclinical (cell cultures, animal models) and/or human studies, vitamins A, D, E, B2, B9 and C, omega-3 long-chain FAs (eicosapentaenoic, docosahexaenoic, conjugated linoleic acid), short-chain FAs (mainly butyrate), medium-chain FAs (capric acid), and different lipid-based products (emu oil, extra-virgin olive oil, lipid replacement therapy), enriched in beneficial FAs and natural antioxidants, were shown to exert beneficial effects (both preventative and palliative) against chemotherapy-induced intestinal mucositis. Although the exact mechanisms of action involved in these effects are not yet well known, our review highlights the interest of investigating on diet and nutrition to implement scientifically robust strategies to improve protection of cancer patients against chemotherapy-induced adverse effects.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"261 ","pages":"Article 108689"},"PeriodicalIF":12.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163725824001098/pdfft?md5=ffd1117625949a41758bb70bcd328b2a&pid=1-s2.0-S0163725824001098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annamaria Cattaneo , Veronica Begni , Valentina Zonca , Marco A. Riva
{"title":"Early life adversities, psychopathologies and novel pharmacological strategies","authors":"Annamaria Cattaneo , Veronica Begni , Valentina Zonca , Marco A. Riva","doi":"10.1016/j.pharmthera.2024.108686","DOIUrl":"10.1016/j.pharmthera.2024.108686","url":null,"abstract":"<div><p>Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of ‘at risk’ individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"260 ","pages":"Article 108686"},"PeriodicalIF":12.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163725824001062/pdfft?md5=b88da8af0537a71806acf771466dbead&pid=1-s2.0-S0163725824001062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spotlight on plasticity-related genes: Current insights in health and disease","authors":"Nicola Brandt , Franziska Köper , Jens Hausmann , Anja U. Bräuer","doi":"10.1016/j.pharmthera.2024.108687","DOIUrl":"10.1016/j.pharmthera.2024.108687","url":null,"abstract":"<div><p>The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1–5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"260 ","pages":"Article 108687"},"PeriodicalIF":12.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163725824001074/pdfft?md5=0aed645e11f2e029e11fe7b22fa6a940&pid=1-s2.0-S0163725824001074-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alankrita Rani , Julia T. Stadler , Gunther Marsche
{"title":"HDL-based therapeutics: A promising frontier in combating viral and bacterial infections","authors":"Alankrita Rani , Julia T. Stadler , Gunther Marsche","doi":"10.1016/j.pharmthera.2024.108684","DOIUrl":"10.1016/j.pharmthera.2024.108684","url":null,"abstract":"<div><p>Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"260 ","pages":"Article 108684"},"PeriodicalIF":12.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163725824001049/pdfft?md5=77dea6061aaeebd918f6e4f3a2c5049f&pid=1-s2.0-S0163725824001049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}