S V Marfina, E A Mikhaleva, N V Akulenko, S S Ryazansky
{"title":"[Method of Inducible Knockdown of Essential Genes in OSC Cell Culture of Drosophila melanogaster].","authors":"S V Marfina, E A Mikhaleva, N V Akulenko, S S Ryazansky","doi":"10.31857/S0026898424020137, EDN: NDBKYZ","DOIUrl":"https://doi.org/10.31857/S0026898424020137, EDN: NDBKYZ","url":null,"abstract":"<p><p>An RNA interference-based method was proposed to achieve an inducible knockdown of genes essential for cell viability. In the method, a genetic cassette in which a copper ion-dependent inducible metallothionein promoter controls expression of a siRNA precursor is inserted into a genomic pre-integrated transgene by CRIPSR/Cas9 technology. The endogenous siRNA source allows the gene knockdown in cell cultures that are refractory to conventional transfection with exogenous siRNA. The efficiency of the method was demonstrated in Drosophila ovarian somatic cell culture (OSC) for two genes that are essential for oogenesis: Cul3, encoding a component of the multiprotein ubiquitin-ligase complex with versatile functions in proteostasis, and cut, encoding a transcription factor regulating differentiation of ovarian follicular cells.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"305-313"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L G Bobyleva, T A Uryupina, N V Penkov, M A Timchenko, A D Ulanova, A G Gabdulkhakov, I M Vikhlyantsev, A G Bobylev
{"title":"[The Structural Features of Skeletal Muscle Titin Aggregates].","authors":"L G Bobyleva, T A Uryupina, N V Penkov, M A Timchenko, A D Ulanova, A G Gabdulkhakov, I M Vikhlyantsev, A G Bobylev","doi":"10.31857/S0026898424020143, EDN: MYWWYU","DOIUrl":"https://doi.org/10.31857/S0026898424020143, EDN: MYWWYU","url":null,"abstract":"<p><p>Titin is a multidomain protein of striated and smooth muscles of vertebrates. The protein consists of repeating immunoglobulin-like (Ig) and fibronectin-like (FnIII) domains, which are β-sandwiches with a predominant β-structure, and also contains disordered regions. In this work, the methods of atomic force microscopy (AFM), X-ray diffraction, and Fourier transform infrared spectroscopy were used to study the morphology and structure of aggregates of rabbit skeletal muscle titin obtained in two different solutions: 0.15 M glycine-KOH, pH 7.0 and 200 mM KCl, 10 mM imidazole, pH 7.0. According to AFM data, skeletal muscle titin formed amorphous aggregates of different morphologies in the above two solutions. Amorphous aggregates of titin formed in a solution containing glycine consisted of much larger particles than aggregates of this protein formed in a solution containing KCl. The \"KCl-aggregates\" according to AFM data had the form of a \"sponge\"-like structure, while amorphous \"glycine-aggregates\" of titin formed \"branching\" structures. Spectrofluorometry revealed the ability of \"glycine-aggregates\" of titin to bind to the dye thioflavin T (TT), and X-ray diffraction revealed the presence of one of the elements of the amyloid cross β-structure, a reflection of ~4.6 Å, in these aggregates. These data indicate that \"glycine-aggregates\" of titin are amyloid or amyloid-like. No similar structural features were found in \"KCl-aggregates\" of titin; they also did not show the ability to bind to thioflavin T, indicating the non-amyloid nature of these titin aggregates. Fourier transform infrared spectroscopy revealed differences in the secondary structure of the two types of titin aggregates. The data we obtained demonstrate the features of structural changes during the formation of intermolecular bonds between molecules of the giant titin protein during its aggregation. The data expand the understanding of the process of amyloid protein aggregation.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"314-324"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A M Schwartz, K A Tatosyan, D V Stasenko, D A Kramerov
{"title":"[Regulation of Transcription by RNA Polymerase III Promotors in the Norm and Pathology].","authors":"A M Schwartz, K A Tatosyan, D V Stasenko, D A Kramerov","doi":"10.31857/S0026898424020032, EDN: NNFJKS","DOIUrl":"https://doi.org/10.31857/S0026898424020032, EDN: NNFJKS","url":null,"abstract":"<p><p>RNA polymerase III synthesizes a wide range of noncoding RNAs shorter than 400 nucleotides in length. These RNAs are involved in protein synthesis (tRNA, 5S rRNA, and 7SL RNA), maturation, and splicing of different types of RNA (RPR, MRP RNA, and U6 snRNA), regulation of transcription (7SK RNA), replication (Y RNA), and intracellular transport (vault RNA). BC200 and BC1 RNA genes are transcribed by RNA polymerase III in neurons only where these RNAs regulate protein synthesis. Mutations in the regulatory elements of the genes transcribed by RNA polymerase III as well as in transcription factors of this RNA polymerase are associated with the development of a number of diseases, primarily oncological and neurological. In this regard, the mechanisms of regulation of the expression of the genes containing various RNA polymerase III promoters were actively studied. This review describes the structural and functional classification of polymerase III promoters, as well as the factors involved in the regulation of promoters of different types. A number of examples demonstrate the role of the described factors in the pathogenesis of human diseases.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"220-233"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V A Ternovoi, E P Ponomareva, E V Protopopova, N L Tupota, T P Mikryukova, V B Loktev
{"title":"[Changes in the Genome of the Tick-Borne Encephalitis Virus during Cultivation].","authors":"V A Ternovoi, E P Ponomareva, E V Protopopova, N L Tupota, T P Mikryukova, V B Loktev","doi":"10.31857/S0026898424020093, EDN: NILAFS","DOIUrl":"https://doi.org/10.31857/S0026898424020093, EDN: NILAFS","url":null,"abstract":"<p><p>The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person. TBEV C11-13 variants obtained at passages 3 and 8 in SPEV cells were inoculated into the brains of white mice for subsequent passages. Full genome sequences of all virus variants were analyzed by high-throughput sequencing. A total of 41 single nucleotide substitutions were found to occur mainly in the genes for the nonstructural proteins NS3 and NS5 (GenBank MF043953, OP902894, and OP902895), and 12 amino acid substitutions were identified in the deduced protein sequences. Reverse nucleotide and amino acid substitutions were detected after three passages through mouse brains. The substitutions restored the primary structures that were characteristic of the isolate C11-13 from a human patient and changed during the eight subsequent passages in SPEV cells. In addition, the 3'-untranslated region (3'-UTR) of the viral genome increased by 306 nt. The Y3 and Y2 3'-UTR elements were found to contain imperfect L and R repeats, which were probably associated with inhibition of cellular XRN1 RNase and thus involved in the formation of subgenomic flaviviral RNAs (sfRNAs). All TBEV variants showed high-level reproduction in both cell cultures and mouse brains. The genomic changes that occurred during successive passages of TBEV are most likely due to its significant genetic variability, which ensures its efficient reproduction in various hosts and its broad distribution in various climatic zones.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"282-294"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N S Gladysh, M A Kovalev, M S Lantsova, M I Popchenko, N L Bolsheva, A M Starkova, E V Bulavkina, D S Karpov, A A Kudryavtsev, A V Kudryavtseva
{"title":"[The Molecular and Genetic Mechanisms of Sex Determination in Poplar].","authors":"N S Gladysh, M A Kovalev, M S Lantsova, M I Popchenko, N L Bolsheva, A M Starkova, E V Bulavkina, D S Karpov, A A Kudryavtsev, A V Kudryavtseva","doi":"10.31857/S0026898424020021, EDN: NOIGMX","DOIUrl":"https://doi.org/10.31857/S0026898424020021, EDN: NOIGMX","url":null,"abstract":"<p><p>The study of molecular and genetic mechanisms of sex determination in the poplar is of interest not only in the fundamental science, but also in the applied research. In landscaping of large settlements, it is advisable to use male individuals of the Populus genus due to their hypoallergenicity and increased resistance to environmental pollution, stress conditions, and pathogens. However, sex determination in poplars is complicated by the complex genetic structure of the sex-determining region of the genome (SDR). In this review, the emergence, evolution, structure, and function of the SDR in the genus Populus are discussed. Current insights into the structure and function of the key regulator of sex selection in poplars, orthologue of the ARR16/ARR17 gene and the possible roles of other genes that are differentially expressed between male and female plants, including microRNAs, in this process are discussed in detail. The great diversity of species and the high complexity of SDR organization justify the need for further study of the molecular mechanisms of sex determination in poplars.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"204-219"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N A Tchurikov, A A Vartanian, E S Klushevskaya, I R Alembekov, A N Kretova, V R Chechetkin, G I Kravatskaya, V S Kosorukov, Y V Kravatsky
{"title":"[Bipolar Action of Inhibitor of Vasculogenic Mimicry on Gene Expression in Melanoma Cells].","authors":"N A Tchurikov, A A Vartanian, E S Klushevskaya, I R Alembekov, A N Kretova, V R Chechetkin, G I Kravatskaya, V S Kosorukov, Y V Kravatsky","doi":"10.31857/S0026898424020116, EDN: NIAKKQ","DOIUrl":"https://doi.org/10.31857/S0026898424020116, EDN: NIAKKQ","url":null,"abstract":"<p><p>Multiple exogenous or endogenous factors alter gene expression patterns by different mechanisms that are poorly understood. We used RNA-Seq analysis in order to study changes in gene expression in melanoma cells that are capable of vasculogenic mimicry that is inhibited upon the action of an inhibitor of vasculogenic mimicry. Here, we show that the drug induces a strong upregulation of 50 genes that control the cell cycle and microtubule cytoskeleton coupled with a strong downregulation of 50 genes that control different cellular metabolic processes. We found that both groups of genes are simultaneously regulated by multiple sets of transcription factors. We conclude that one way for coordinated regulation of large groups of genes is regulation simultaneously by multiple transcription factors.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"295-304"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[The Expression of TP53TG1, LINC00342, MALAT1, H19, and MEG3 Long Noncoding RNAs in Type 2 diabetes mellitus].","authors":"O V Kochetova, D Sh Avzaletdinova, G F Korytina","doi":"10.31857/S0026898424020075, EDN: NJLNDC","DOIUrl":"https://doi.org/10.31857/S0026898424020075, EDN: NJLNDC","url":null,"abstract":"<p><p>Type 2 diabetes is a complex and multifactorial metabolic disorder. The frequency of type 2 diabetes has dramatically increased worldwide. Long noncoding RNAs play a regulatory role in pathological processes of type 2 diabetes. The aim of the study was to analyze TP53TG1, LINC00342, MALAT1, H19, and MEG3 lncRNAs in patients with type 2 diabetes and metabolic parameters, as well as the risk of diabetic retinopathy. Participants included 51 patients with diabetes and 70 healthy individuals. The expression of the TP53TG1 and LINC00342 genes was significantly decreased in the patients with diabetes compared to healthy individuals. MALAT1 gene expression was higher in diabetes patients. H19 gene expression was increased in the patients with diabetic retinopathy compared patients without retinopathy. TP53TG1, LINC00342, and MEG3 expression was decreased in patients with diabetic retinopathy and MALAT1 expression was increased. H19 is positively correlated with triglyceride levels; TP53TG1 and LINC00342 are positively correlated with HbA1c levels and fasting glucose levels. MALAT1 is negatively correlated with HDL levels and positively correlated with LDL levels. A decrease in the expression level of TP53TG1 and LINC00342 and an increase in the level of MALAT1 in diabetes, as well as an association with glycemic control, indicate the role of the studied noncoding RNAs in the development of type 2 diabetes mellitus and retinopathy and can be considered as candidates for early diagnosis of type 2 diabetes.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"260-269"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A N Uvarova, E A Tkachenko, E M Stasevich, E A Bogomolova, E A Zheremyan, D V Kuprash, K V Korneev
{"title":"[The rs2564978(T) Allele Associated with Severe Influenza A Disrupts the Binding Site for Myeloid Differentiation Factor PU.1 and Reduces CD55/DAF Gene Promoter Activity in Macrophages].","authors":"A N Uvarova, E A Tkachenko, E M Stasevich, E A Bogomolova, E A Zheremyan, D V Kuprash, K V Korneev","doi":"10.31857/S0026898424020089, EDN: NIRUNT","DOIUrl":"https://doi.org/10.31857/S0026898424020089, EDN: NIRUNT","url":null,"abstract":"<p><p>The complement inhibitor CD55/DAF is expressed on many cell types. Dysregulation of CD55 expression is associated with increased disease severity in influenza A infection and vascular complications in pathologies that involve excessive activation of the complement system. A luciferase reporter system was used to functionally analyze the single nucleotide polymorphism rs2564978 in the U937 human promonocytic cell line. The polymorphism is in the promoter of the CD55 gene, and its minor allele T is associated with a severe course of influenza A(H1N1)pdm09. A decreased activity of the CD55 promoter carrying the minor rs2564978(T) allele was observed in activated U937 cells, which provide a cell model of human macrophages. Using bioinformatics resources, PU.1 was identified as a potential transcription factor that may bind to the CD55 promoter at the rs2564978 site in an allele-specific manner. The involvement of PU.1 in modulating CD55 promoter activity was verified by a PU.1 genetic knockdown with small interfering RNAs under specific monocyte activation conditions.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"270-281"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V A Kezin, E S Matyugina, S A Surzhikov, M S Novikov, A A Maslova, I L Karpenko, A V Ivanov, S N Kochetkov, A L Khandazhinskaya
{"title":"[Cytotoxicity Studies of 5-Arylaminouracil Derivatives].","authors":"V A Kezin, E S Matyugina, S A Surzhikov, M S Novikov, A A Maslova, I L Karpenko, A V Ivanov, S N Kochetkov, A L Khandazhinskaya","doi":"10.31857/S0026898424020156, EDN: MYDBYJ","DOIUrl":"https://doi.org/10.31857/S0026898424020156, EDN: MYDBYJ","url":null,"abstract":"<p><p>We have previously shown that 5-arylaminouracil derivatives can inhibit HIV-1, herpesviruses, mycobacteria, and other pathogens through various mechanisms. The purpose of this study was to evaluate the potential of 5-arylaminouracils and their derivatives against leukemia, neuroblastoma, and glial brain tumors. 5-Aminouracils with various substituents and their 5'-norcabocyclic and ribo derivatives were screened for cytotoxicity against two neuroblastoma cell lines (SH-SY5Y and IMR-32), K-562 lymphoblastic cells, HL-60 promyeoloblastic cells, and low-passage variants of well-differentiated glioblastoma multiforme (GBM5522 and GBM6138). Cytotoxicity assessment by the standard MTT test showed that most of the compounds lack significant toxicity towards the above cells. However, 5-(4-isopropylphenylamine)uracil and 5-(4-tert-butylphenylamine)uracil exhibited a dose-dependent toxic effect towards the GBM6138 cell line with half-maximal inhibitory concentrations (IC50) of 9 and 2.3 μМ, respectively. Antitumor activity was for the first time demonstrated for compounds of this type and can serve as a starting point for further research.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"325-332"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I V Kukushkina, P A Makhnovskii, V G Zgoda, N S Kurochkina, D V Popov
{"title":"[Knockout of Hsp70 Genes Modulates Age-Related Transcriptomic Changes in Leg Muscles and Reduces the Locomotion Speed and Lifespan of Drosophila melanogaster].","authors":"I V Kukushkina, P A Makhnovskii, V G Zgoda, N S Kurochkina, D V Popov","doi":"10.31857/S0026898424020065, EDN: NKMIFA","DOIUrl":"https://doi.org/10.31857/S0026898424020065, EDN: NKMIFA","url":null,"abstract":"<p><p>This study investigated the effect of knockout of six Hsp70 genes (orthologues of the mammalian genes Hspa1a, Hspa1b, Hspa2, and Hspa8) on age-related changes in gene expression in the legs of Drosophila melanogaster, which contain predominantly skeletal muscle bundles. For this, the leg transcriptomic profile was examined in males of the w^(1118) control strain and the Hsp70^(-) strain on the 7th, 23rd and 47th days of life. In w^(1118) flies, an age-related decrease in the locomotion (climbing) speed (a marker of functional state and endurance) was accompanied by a pronounced change in the transcriptomic profile of the leg skeletal muscles, which is conservative in nature. In Hsp70^(-) flies, the median lifespan was shorter and the locomotion speed was significantly lower compared to the control; at the same time, complex changes in the age-related dynamics of the skeletal muscle transcriptome were observed. Mass spectrometry-based quantitative proteomics showed that 47-day-old Hsp70^(-) flies, compared with w^(1118) flies, demonstrated multidirectional changes in the contents of key enzymes of glucose metabolism and fat oxidation (glycolysis, pentose phosphate pathway, Krebs cycle, beta-oxidation, and oxidative phosphorylation). Such dysregulation may be associated with a compensatory increase in the expression of other genes encoding chaperones (small Hsp, Hsp40, 60, and 70), which regulate specific sets of target proteins. Taken together, our data show that knockout of six Hsp70 genes slightly reduced the median lifespan of flies, but significantly reduced the locomotion speed, which may be associated with complex changes in the transcriptome of the leg skeletal muscles and with multidirectional changes in the contents of key enzymes of energy metabolism.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 2","pages":"246-259"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}