International Journal of Materials and Structural Integrity最新文献

筛选
英文 中文
Triaxial tests on weak planes damage of hard brittle shale of Longmaxi formation in South Sichuan Basin, China 川南龙马溪组硬脆性页岩弱面损伤的三轴试验
International Journal of Materials and Structural Integrity Pub Date : 2019-10-21 DOI: 10.1504/ijmsi.2019.103207
Yi Ding, Xiangjun Liu, Wei Zeng
{"title":"Triaxial tests on weak planes damage of hard brittle shale of Longmaxi formation in South Sichuan Basin, China","authors":"Yi Ding, Xiangjun Liu, Wei Zeng","doi":"10.1504/ijmsi.2019.103207","DOIUrl":"https://doi.org/10.1504/ijmsi.2019.103207","url":null,"abstract":"In petroleum field, rock mechanical property is a significant parameter for design of drilling operation. Shale formation has high risk of wellbore instability during drilling. To reduce risk in drilling, more investigations on shale should be conducted. Therefore, in this paper, by using X-ray diffraction and electron microscope scanning test, the mineral composition and microstructure of brittle shale of Longmaxi formation have been analysed. Based on the triaxial compression tests, rock mechanical parameters in variable time have been discussed when shale is in the external force condition. In particular, considering shale failure along weak plane, changes in shale mechanical properties, like stress, strain, structure integrity and elastic parameters, have been analysed. This work offers comprehensive exploration on shale mechanical properties. Mechanical parameters of shale in this study can provide reference for engineering design, and more importantly, establish the foundation for investigation of rock damage in the future.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijmsi.2019.103207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48835612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of algorithms to handle geometric and material nonlinearities 处理几何非线性和材料非线性算法的比较研究
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022246
S. Mulay, R. Udhayaraman, M. Anas
{"title":"Comparative study of algorithms to handle geometric and material nonlinearities","authors":"S. Mulay, R. Udhayaraman, M. Anas","doi":"10.1504/IJMSI.2019.10022246","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022246","url":null,"abstract":"It is critical to handle geometric and material nonlinearities in a stable manner while solving the problems from solid mechanics, such that it results in a converged solution. The present work compares the suitability of generalised displacement control (GDC) and displacement control algorithms (DCA) by solving several 1D and 2D formulations. The ability of these algorithms to handle homogeneous and inhomogeneous deformations is also studied. A novel direct displacement control method (DDCM), coupled with Newton-Raphson method, is proposed and compared with GDC and DCA approaches. Appropriate conclusions are finally drawn based on the successful demonstrations of the numerical results obtained by GDC, DCA and DDCM approaches.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45009859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Experimental characterisation of leak through elastomer-metal interface 弹性体-金属界面泄漏的实验表征
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022255
Kambhammettu Sri Krishna Sudhamsu, C. L. Rao, A. Deshpande, J. Devan
{"title":"Experimental characterisation of leak through elastomer-metal interface","authors":"Kambhammettu Sri Krishna Sudhamsu, C. L. Rao, A. Deshpande, J. Devan","doi":"10.1504/IJMSI.2019.10022255","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022255","url":null,"abstract":"Elastomeric seals are devices that are widely used to prevent fluid leakage through the interface of mating parts. In this paper, we study the leak characteristics of a representative elastomeric seal system using an experimental setup that has been developed to measure the leak rate of gas through an elastomer-metal interface as a function of sealing load intensity and fluid pressure. These experiments are carried out on nitrile butadiene rubber (NBR), hydrogenated nitrile butadiene rubber (HNBR) and fluoro-elastomer (FKM) specimens using nitrogen gas at pressures ranging from 40 kPa to 800 kPa. The experiments revealed that the leak rate increases rapidly with gas pressure and decreases with sealing load intensity. When leak rate was plotted against normalised gas pressure, it was observed that all the data points fall reasonably on one single curve irrespective of sealing load intensity and the material. These results will be useful for further analysis in developing a mathematical model for characterising fluid leak through elastomer-metal alloy interfaces.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47123866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effect of soot on tribological properties of steel and ceramic contacts 烟尘对钢和陶瓷触头摩擦学性能的影响
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022235
Yadvendra Kaushik, P. Ramkumar
{"title":"Effect of soot on tribological properties of steel and ceramic contacts","authors":"Yadvendra Kaushik, P. Ramkumar","doi":"10.1504/IJMSI.2019.10022235","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022235","url":null,"abstract":"The present study aims to understand the effect of soot on tribological properties using different tribo-couples of bearing steel, silicon nitride and zirconia. The present test programme is performed using a pin-on-disc tribometer with LVDT, temperature and friction transducers. All tests are carried out at a sliding speed of 5 m/s and contact stress of 2.05 GPa to simulate a typical valve-train operation condition in diesel engine. Commercially available heavy-duty diesel engine oil is used as lubricating oil. Friction and wear results are studied at different levels of soot concentration. Silicon nitride shows the lowest friction and wear against the bearing steel amongst the all tribo-couples. Post-test analysis is carried out using optical microscope and SEM with EDX of the worn surfaces of the pin materials to identify the wear mechanisms. Abrasive wear mechanism was found to be the primary wear mechanism for all tribo-couples. A delamination wear mechanism is proposed for zirconia in presence of soot contamination.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43463712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filler shape and volume fraction effect on dynamic compression behaviour of glass filler reinforced epoxy composites 填料形状和体积分数对玻璃填料增强环氧复合材料动态压缩性能的影响
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022239
Sarthak S. Singh, V. Parameswaran, R. Kitey
{"title":"Filler shape and volume fraction effect on dynamic compression behaviour of glass filler reinforced epoxy composites","authors":"Sarthak S. Singh, V. Parameswaran, R. Kitey","doi":"10.1504/IJMSI.2019.10022239","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022239","url":null,"abstract":"The effect of filler shape and volume fraction on the dynamic compression behaviour of low volume fraction rigid particle filled polymer composites is demonstrated by performing experiments using split-Hopkinson pressure bar (SHPB) setup. The results indicate negligible influence of spherical particles on the mechanical behaviour of composites due to the large inter-particle separation distance at low volume fractions. On the contrary, the mechanical behaviour of composites is considerably affected by milled-fibres due to the large surface area to volume ratio of slender fillers which significantly decreases the inter-particle separation distance. The computational analysis in combination with experimental observations reveals two competing deformation mechanisms, the constraints provided by fillers to the polymeric chain movements and increasing strain softening in the matrix due to magnified stresses in between the particles. Depending upon the filler volume fraction one of the two mechanisms dominates, thus tailoring post-yield stress vs. strain curves of filled polymers.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48627588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of obliquity on ballistic impact response of plain-woven fabric 倾角对平纹织物弹道冲击响应的影响
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022234
K. Yadav, A. Upadhyay, K. Shukla
{"title":"Effect of obliquity on ballistic impact response of plain-woven fabric","authors":"K. Yadav, A. Upadhyay, K. Shukla","doi":"10.1504/IJMSI.2019.10022234","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022234","url":null,"abstract":"This numerical study presents the effect of obliquity on ballistic impact response of plain-woven fabric. A numerical model of plain-woven fabric subjected to a high-velocity impact at yarns crossover is simulated with the help of commercial finite element tool ABAQUS. The FE analysis depicts that the ballistic impact response of plain-woven fabric largely depends on the obliquity of impact due to phenomena like uneven strain distribution in different directions and sliding of the projectile on woven fabric yarns about the point of impact. The total energy dissipated by the fabric showed a decreasing-increasing behaviour with an increase in obliquity. This transition in the trend of total energy dissipated by fabric came in between 30°-45°, which depends on relative dominance of sliding of yarn and uneven strain distribution.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42988822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet-based finite element simulation of guided waves containing harmonics 含谐波导波的小波有限元模拟
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022237
Ambuj Sharma, Sandeep Kumar, A. Tyagi, Kumar Kaushik Ranjan
{"title":"Wavelet-based finite element simulation of guided waves containing harmonics","authors":"Ambuj Sharma, Sandeep Kumar, A. Tyagi, Kumar Kaushik Ranjan","doi":"10.1504/IJMSI.2019.10022237","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022237","url":null,"abstract":"This paper presents a promising numerical scheme for simulation of many harmonics in wave propagation. The wavelet-based adaptive technique eliminates the requirement for a very large number of nodes in finite element method for propagation of such waves. This dynamic adaptive grid selection is based on the fact that very few wavelet coefficients are required to represent a short pulse containing higher harmonics. The method is particularly useful where higher harmonics are ignored due to very high computational cost. In this work, B-spline and Daubechies wavelets-based non-standard (NS) multi-scale operator are applied, and the results are compared with the finite element method.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48423412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Numerical investigation of crack growth in AISI type 316LN stainless steel weld joint using GTN damage model 基于GTN损伤模型的AISI型316LN不锈钢焊缝裂纹扩展数值研究
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022240
N. Deepak, C. L. Rao, S. Krishnan, G. Sasikala, R. Prakash
{"title":"Numerical investigation of crack growth in AISI type 316LN stainless steel weld joint using GTN damage model","authors":"N. Deepak, C. L. Rao, S. Krishnan, G. Sasikala, R. Prakash","doi":"10.1504/IJMSI.2019.10022240","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022240","url":null,"abstract":"Ductile crack growth in austenitic 316LN stainless steel weld joint has been studied using FEA simulations with Gurson-Tvergaard-Needleman (GTN) damage model. The material specific GTN damage parameters are assessed and calibrated based on coupled experimental and numerical simulations for tensile and compact tension specimens. The influence of initial crack tip at various locations across the weld thickness has been analysed using CT geometry. The simulated results reveal that the crack propagates along the initial crack line for centrally located welds and deviates from the crack line for interfacial welds. The crack growth path for all cases is explained with damage parameters like equivalent plastic strain and void volume fraction.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44406962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cyclic electromechanical response of poly(vinylidene fluoride) 聚偏二氟乙烯的循环机电响应
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022253
L. Harish, C. L. Rao
{"title":"Cyclic electromechanical response of poly(vinylidene fluoride)","authors":"L. Harish, C. L. Rao","doi":"10.1504/IJMSI.2019.10022253","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022253","url":null,"abstract":"In this study, we present the results of cyclic electromechanical experiments conducted on uniaxially stretched poly(vinylidene fluoride) (PVDF) films. The experiments were carried out over a range of applied displacement amplitude ranging from 0.5 mm to 1.5 mm, superposed on an initial stretch on the test samples. The strains were calculated using non-contact speckle monitoring method. The hysteresis plots of mechanical and electromechanical cyclic responses are presented. Stress relaxation was observed up to 70% in orthogonal to stretch direction and 16% in the stretch direction. Observed piezoelectricity along both the directions is reported and discussed in the paper.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43731782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear analysis of FGM plates using generalised higher order shear deformation theory 基于广义高阶剪切变形理论的FGM板非线性分析
International Journal of Materials and Structural Integrity Pub Date : 2019-06-27 DOI: 10.1504/IJMSI.2019.10022233
S. Srividhya, B. Kumar, Raj P. Gupta, A. Rajagopal
{"title":"Nonlinear analysis of FGM plates using generalised higher order shear deformation theory","authors":"S. Srividhya, B. Kumar, Raj P. Gupta, A. Rajagopal","doi":"10.1504/IJMSI.2019.10022233","DOIUrl":"https://doi.org/10.1504/IJMSI.2019.10022233","url":null,"abstract":"In the present work a generalised higher order shear deformation theory (GHSDT) for the flexural analysis of the functionally graded plates subjected to uniformly distributed load of varying intensities has been formulated. A finite element formulation with a confirming type isoparametric approximation has been formulated and implemented. Various types of boundary conditions have been considered for the analysis. The formulation accounts for geometric nonlinear terms in the strains. The formulation also complies with plate surface boundary conditions and does not require shear correction factors. The formulation has been validated by comparing the results with those available in the literature. Numerical results for different load parameters, volume fraction, and boundary conditions have been presented and compared with literature. Results show that the proposed GHSDT gives a better approximation to transverse shear strains and the results are closer to those obtained from analytical solutions.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45810968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信