N. Deepak, C. L. Rao, S. Krishnan, G. Sasikala, R. Prakash
{"title":"基于GTN损伤模型的AISI型316LN不锈钢焊缝裂纹扩展数值研究","authors":"N. Deepak, C. L. Rao, S. Krishnan, G. Sasikala, R. Prakash","doi":"10.1504/IJMSI.2019.10022240","DOIUrl":null,"url":null,"abstract":"Ductile crack growth in austenitic 316LN stainless steel weld joint has been studied using FEA simulations with Gurson-Tvergaard-Needleman (GTN) damage model. The material specific GTN damage parameters are assessed and calibrated based on coupled experimental and numerical simulations for tensile and compact tension specimens. The influence of initial crack tip at various locations across the weld thickness has been analysed using CT geometry. The simulated results reveal that the crack propagates along the initial crack line for centrally located welds and deviates from the crack line for interfacial welds. The crack growth path for all cases is explained with damage parameters like equivalent plastic strain and void volume fraction.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical investigation of crack growth in AISI type 316LN stainless steel weld joint using GTN damage model\",\"authors\":\"N. Deepak, C. L. Rao, S. Krishnan, G. Sasikala, R. Prakash\",\"doi\":\"10.1504/IJMSI.2019.10022240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ductile crack growth in austenitic 316LN stainless steel weld joint has been studied using FEA simulations with Gurson-Tvergaard-Needleman (GTN) damage model. The material specific GTN damage parameters are assessed and calibrated based on coupled experimental and numerical simulations for tensile and compact tension specimens. The influence of initial crack tip at various locations across the weld thickness has been analysed using CT geometry. The simulated results reveal that the crack propagates along the initial crack line for centrally located welds and deviates from the crack line for interfacial welds. The crack growth path for all cases is explained with damage parameters like equivalent plastic strain and void volume fraction.\",\"PeriodicalId\":39035,\"journal\":{\"name\":\"International Journal of Materials and Structural Integrity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials and Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMSI.2019.10022240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMSI.2019.10022240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Numerical investigation of crack growth in AISI type 316LN stainless steel weld joint using GTN damage model
Ductile crack growth in austenitic 316LN stainless steel weld joint has been studied using FEA simulations with Gurson-Tvergaard-Needleman (GTN) damage model. The material specific GTN damage parameters are assessed and calibrated based on coupled experimental and numerical simulations for tensile and compact tension specimens. The influence of initial crack tip at various locations across the weld thickness has been analysed using CT geometry. The simulated results reveal that the crack propagates along the initial crack line for centrally located welds and deviates from the crack line for interfacial welds. The crack growth path for all cases is explained with damage parameters like equivalent plastic strain and void volume fraction.