Thejasree Pasupuleti, Manikandan Natarajan, V Kumar, Lakshmi Narasimhamu Katta, Jothi Kiruthika, R Silambarasan
{"title":"Predictive Modelling and Process Parameter Prediction for Monel 400 Wire Electrical Discharge Machining for Rocket Frames","authors":"Thejasree Pasupuleti, Manikandan Natarajan, V Kumar, Lakshmi Narasimhamu Katta, Jothi Kiruthika, R Silambarasan","doi":"10.4271/2023-28-0088","DOIUrl":"https://doi.org/10.4271/2023-28-0088","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Due to their inherent properties and superior performance over titanium-based materials, nickel-based superalloys are widely utilized in the manufacturing industry. Monel 400 is among them. This nickel-copper alloy possesses exceptional corrosion resistance and mechanical properties. Monel 400 is primarily utilized in the chemical industry, heat exchangers, and turbine component manufacturing. Due to the properties of Monel 400, it is deemed as hard to machine materials with the aid of conventional methods. For investigating the performance of this process, a three-level analysis was carried out. Pulse on duration and applied current at three levels are the independent parameters used for designing the experiments. In this present article, a single-response analysis technique is used which is known as Taguchi to investigate the impact of the various process parameters on the output variables. They focused on three response factors namely the rate of material removal, deviation in the dimension, and perpendicularity error. An efficient predictive model has been developed with the help of regression analysis. To enhance the performance of Wire Electrical Discharge Machining (WEDM) process, Taguchi based grey approach has been adopted. The findings of the study revealed that the proposed approach could assist to enhance the overall effectiveness of the process.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Study on the Handling Performance of 125 cc Scooter to Electric Propulsion Using BIKESIM <sup>TM</sup>","authors":"Thehaleesan K V, Hariharan Sankarasubramanian","doi":"10.4271/2023-28-0158","DOIUrl":"https://doi.org/10.4271/2023-28-0158","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">The penetration of Electric vehicle market in India has given rise to an eco-friendly, efficient mode of transport. This work aims to answer the question of whether a powertrain change from an internal combustion engine to electric motor in an existing IC powered 125cc scooter, will change the handling performance of the vehicle. This work was carried out using multi-body dynamics simulation software called BIKESIM<sup>TM</sup>. The moments of inertia and mass properties were identified by modelling the vehicle chassis, along with the two different powertrains. A 15.6% increase in the overall mass of the vehicle and a 5% increase in the moments of inertia in the pitch, roll and yaw directions when the powertrain is changed from ICE to electric. A slalom test simulation in BIKESIM<sup>TM</sup> was used to evaluate the differences in maneuverability when the powertrains were changed. The observations from the simulation show a significant change of around 20% in the lateral acceleration, 16.5% in steer angle and 18% in the lean angle when the powertrain is changed from ICE to electric. The rider parameters also experience a deviation as the rider effort and steering torque of the electric powertrain is 14% and 28.5% more than its ICE counterpart respectively. These percentage increases in the handling parameters conclude that the conversion of an existing ICE powertrain to electric powertrain although feasible, will put the rider at a scenario of handling a significantly different vehicle.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saravanabhavan Dheivasigamani, Chris Varghese Vattamala, Thulasirajan Ganesan, Praveen Chakrapani Rao
{"title":"Approach to Develop Reliable Two-Wheeler EV Powertrains","authors":"Saravanabhavan Dheivasigamani, Chris Varghese Vattamala, Thulasirajan Ganesan, Praveen Chakrapani Rao","doi":"10.4271/2023-28-0101","DOIUrl":"https://doi.org/10.4271/2023-28-0101","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">In the past decade, the transportation industry has witnessed a rapid transition from conventional fossil fuels to electric power. This shift has spurred diverse electrification initiatives spanning various vehicle categories, including E-cycles, 2-wheelers, 3-wheelers, cars, and commercial vehicles. Central to these road transport vehicles are essential components such as battery systems, electric motors, and field-oriented controllers. These controllers’ interface with the vehicle control unit, optimizing motor performance across diverse operational conditions. The reliability of the core motor and controller system is of paramount importance, ensuring seamless operation throughout its life. Notably, certain applications, like 2-wheeler, demand customized designs with compact configurations to save space and eliminate excessive wiring. This necessitates heightened reliability due to limited serviceability within these confined designs. This paper outlines a comprehensive strategy for achieving holistic reliability within the context of 2-wheel electric vehicle (EV) motors and controllers. It addresses the challenges encountered in enhancing reliability and proposes a systematic approach for assessment and improvement. The proposed methodology involves the utilization of established tools such as Failure Modes, Effects, and Criticality Analysis (FMECA), Fault Tree Analysis (FTA), and Reliability Block Diagrams (RBD). Furthermore, this approach incorporates advanced techniques like Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) simulations, along with adherence to industry-wide standards. By adopting this structured methodology, manufacturers and researchers can effectively evaluate and enhance the reliability of 2-wheel EV powertrains. The integration of diverse analytical tools, simulation methods, and industry best practices collectively contributes to the attainment of a robust and dependable electric vehicle powertrain system.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Mechanical Vibration in Permanent Magnet Electric Motor Construction and Its Effects in Speed High Operation","authors":"Varatharaj Neelakandan, Prabakaran B","doi":"10.4271/2023-28-0171","DOIUrl":"https://doi.org/10.4271/2023-28-0171","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">The internal rotor and related parts of a permanent magnet synchronous motor (PMSM) utilized in electric cars are being designed with optimization as the key objective of this study. The goal is to achieve the best “NVH (Noise, Vibration, and Harshness)” performance while maintaining the mechanical integrity and longevity of the motor. By matching the motor’s NVH characteristics with its peak and continuous power needs depending on the duty cycle of the vehicle, the study seeks to improve overall vehicle performance. The researchers use advanced NVH simulation modeling and simulation methods with the “CAE Software” finite element software program to do this. The ultimate goal is to enhance the motor’s noise and vibration characteristics while assuring its durability and long-term performance.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machinability Investigations on Wire Electrical Discharge Machining of Inconel 625 by Taguchi Based Grey Approach","authors":"Manikandan Natarajan, Thejasree Pasupuleti, Jothi Kiruthika, Gnana Sagaya Raj, PC Krishnamachary, Gowthami Kotapati","doi":"10.4271/2023-28-0124","DOIUrl":"https://doi.org/10.4271/2023-28-0124","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Among the challenging materials used in high-temperature applications is Inconel 625. Due to its low thermal coefficient and greater strength, traditional methods tend to produce poor results when it comes to turning Inconel 625. In order to overcome these issues, a new approach has been proposed that utilizes unconventional techniques. WEDM is a variant of the electrical discharge manufacturing process that is commonly used in the production of complex components. It is mainly utilized for the hard to machine parts. A study on the process parameters of WEDM for the machining of Inconel 625 was performed by utilizing the analysis of Taguchi. The study focused on the various parameters of the process, such as peak current, pulse on time, and off time. The performance measures that were considered in this study included surface roughness and material removal rate. The results of the analysis revealed that the various process variables affected the performance indicators. An experimental analysis was also performed to study the effect of the individual parameters on the response parameters.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Artificial Neural Network Model for CNC Drilling of AA6061 with Coated Textured Tool for Auto Parts","authors":"Lakshmi Narasimhamu Katta, Thejasree Pasupuleti, Manikandan Natarajan, Narapureddy Siva Rami Reddy, Lakshmi Narayana Somsole","doi":"10.4271/2023-28-0079","DOIUrl":"https://doi.org/10.4271/2023-28-0079","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">With the progress of manufacturing industries being critical for economic development, there is a significant requirement to explore and scrutinize advanced materials, particularly alloy materials, to facilitate the efficient utilization of modern technologies. Lightweight and high-strength materials, such as aluminium alloys, are extensively suggested for various applications requiring strength and corrosion resistance, including but not limited to automotive, marine, and high-temperature applications. As a result, there is a significant necessity to examine and evaluate these materials to promote their effective use in the manufacturing sectors. This research paper presents the development of an Artificial Neural Network (ANN) model for Computer Numerical Control (CNC) drilling of AA6061 aluminium alloy with a coated textured tool. The primary aim of the study is to optimize the drilling process and enhance the machinability of the material. The ANN model utilizes spindle speed, feed rate and Coolant type as input parameters, while the surface roughness, Material removal rate and temperature are the output parameters. A coated textured tool is chosen due to its exceptional performance over conventional drilling tools drilling. The textured surface helps in efficient chip evacuation, which reduces friction and heat generation during machining, while the coating on the tool improves its wear resistance and prolongs its lifespan. Experimental data obtained from CNC drilling of AA6061 with the coated textured tool is used to train and test the ANN model. The results demonstrate that the ANN model provides accurate predictions of the output performance of the machined hole under different drilling conditions.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deborah Serenade Stephen, Praveena V, Ramanathan Av, Sujith S
{"title":"Load Bearing Analysis of Titanium Surface Ground with CBN Wheel and 6% CNT-CBN Wheel","authors":"Deborah Serenade Stephen, Praveena V, Ramanathan Av, Sujith S","doi":"10.4271/2023-28-0080","DOIUrl":"https://doi.org/10.4271/2023-28-0080","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Surface integrity is an important factor in the effective functioning of a component. For this reason, the surface finish is given as meticulous attention as possible, while quality checks are rigorous. The process parameters affecting surface roughness are carefully controlled, with many preventive measures enforced to avoid deviation from the tolerance limits. Surface finish is an important part of the load-bearing properties of a surface as the asperities on its surface first come into contact with the mating surfaces. On contact, the asperities are flattened, and there is debris formation. These asperities are critical in joint replacements where Titanium is a material of choice, as the debris can react with bones and even cause necrosis of bone. The surface finish of Titanium is important as the asperities can function as points of stress when subjected to loads. Stress concentrators are detrimental to a material’s life; therefore, a part’s surface finish becomes critical. This research work has studied the surface finish of a titanium grade 5 alloy by grinding it with a novel grinding wheel with 6% carbon nanotubes (CNTs) electroplated along with cubic boron nitride (CBN) grits in a nickel matrix. The surface finish has improved from the commercially available grinding wheel and has increased the load-bearing capacities of the Titanium workpiece significantly.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design Improvement of an Automotive Shock Absorber Component Subjected to Fretting Fatigue","authors":"Ashish Gorishankar Sharma, Lokavarapu Bhaskara Rao","doi":"10.4271/2023-28-0157","DOIUrl":"https://doi.org/10.4271/2023-28-0157","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">A shock absorber endurance test for an automobile that was supposed to resist at least 200,000 load cycles but failed to meet the statutory fatigue limit was under examination. This is due to the breakdown of the assembly that holds the shock absorber shims. This failure occurred due to Fretting fatigue. A design improvement is being introduced to avoid fretting fatigue on the shock absorber shim assembly. FEA is used to investigate the shim assembly in order to locate the stress zone. After adding more shims to the piston, fatigue life was significantly improved. The damping forces were unaffected by the fundamental solution that was applied to make this improvement.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Assessment of Performance of Compression Ignition Engine Fueled with Diesel-Bio Butanol Blends Enhanced with Castor Oil for Properties","authors":"Prabakaran B","doi":"10.4271/2023-28-0107","DOIUrl":"https://doi.org/10.4271/2023-28-0107","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Bio-butanol addition into diesel for utilization as fuel is an attractive attempt by most researchers. However, the usage of bio-butanol decreases the essential properties of the final blend significantly. This is study is to overcome this limitation by addition of castor oil into the base blend (containing 20% bio-butanol) by enhancing the properties. The study starts with the addition of castor oil (1% to 10%) and testing the properties. One blend is chosen by comparing the properties considering diesel fuel properties. The result depicts the blend of bio-butanol with 10% and 15% of castor oil is found suitable and this blend produces higher thermal efficiency, lower oxides of nitrogen and smoke, and higher heat release and pressure when fueled in the engine at higher brake powers. However, this blend produces higher hydrocarbons and carbon monoxide at low brake power. This study enhances the use of utilization of biobutanol blends in the engine for a long-term duration as the kinematic viscosity is competent to diesel fuel which lowers the friction in the parts of the engine. 20BB80D COBD 10 and 20BB80D COBD 15 produce 8.3% and 5.2% which are slightly low EGT by taking the reference values of diesel. Maximum pressure when fueling with 20BB80D COBD 10 and 20BB80D COBD 15 are low by 3.1% and 1.8% while comparing the diesel values Emissions of oxides of nitrogen are found to be significantly low by 13.2% and 3.4% and the smoke emissions are high by 10.2% and 3.2% (comparing diesel values). Also, the saving of fossil fuel resources through the decrease in imports is significant. There is no modifications necessary in the engine to use this blend.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parallel Scheduling of Machines and Tools without Tool Delay Using Symbiotic Organisms Search Algorithm","authors":"Padma Lalitha Mareddy, Vishnu Vardhan Reddy D, Lakshmi Narasimhamu Katta, Narapureddy Siva Rami Reddy","doi":"10.4271/2023-28-0142","DOIUrl":"https://doi.org/10.4271/2023-28-0142","url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">This work presents a novel approach for parallel scheduling of machines and tools without tool delay in the automobile manufacturing industry using a symbiotic organisms search algorithm (SOSA). This paper proposes nonlinear mixed integer programming (MIP) formulation to model simultaneous scheduling problems. The mutualistic relationship between different species in nature inspires the proposed algorithm. It aims to optimize the scheduling process by minimizing the makespan (MSN) while ensuring no tool delay during the production process. The algorithm is implemented in a parallel computing environment to speed up the search process and handle scheduling problems. Experimental results show that the proposed approach outperforms existing methods in terms of solution quality and computational efficiency. This work offers a promising solution for real-world manufacturing scheduling problems with multiple machines and tools, often characterized by complex constraints and uncertainties.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}