{"title":"Analyzing Exfordance Use by Unilateral Upper-Limb Amputees* This work was supported by the US Army Medical Research & Materiel Command, grant W81XWH-14-1-0277.","authors":"J. Cochran, A. Spiers, A. Dollar","doi":"10.1109/BIOROB.2018.8487797","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487797","url":null,"abstract":"Humans often use features of their environment for assistance in picking up and manipulating objects or in stabilizing their own bodies. This ‘exfordance’ use occurs when external contact or gravitational or inertial forces are utilized to aid in task completion or stabilization. This paper presents a categorization of exfordance use and applies the new framework to quantifying how experienced unilateral upper-limb amputees use of exfordances during everyday activities, both in their affected and unaffected limbs. Head-mounted cameras were used to record video footage of participants in their homes while they completed self-selected activities of daily living. A total of 35 minutes of dense manipulation footage has been analyzed for each of 5 trans-radial amputees with different prosthetic devices, resulting in over 4,700 instances of observed exfordance use. The results indicate that participants used exfordance-based vs. non exfordance-based manipulation strategies approximately the same amount with both their intact and prosthetic hands, after adjusting for overall hand use. Furthermore, the specific exfordance use strategies vary substantially between limbs, with participants using environmental surfaces such as tables to guide the motion of their unaffected hand more frequently than with their prosthetic hand, possibly due to increased control and passive conformation ability. Also, participants used gravity-based exfordances (e.g. hanging a towel over the hand) much more frequently with their prosthetic, likely due to its reduced grasping capabilities.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"18 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130674637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Custom Force Sensor and Sensory Feedback System to Enable Grip Control of a Robotic Prosthetic Hand","authors":"Nabeel Seedat, I. Mohamed, A. Mohamed","doi":"10.1109/BIOROB.2018.8487948","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487948","url":null,"abstract":"Amputees living in the developing world can benefit greatly from a dexterous low-cost robotic prosthetic hand that can be controlled via electromyography (EMG). This research addresses part of the challenge of designing and constructing such a low-cost device. In particular, the development of novel and functionally suitable fingertip sensors is presented in this paper. The sensors allowed for the user with a trans-humeral amputation to intuitively control grip strength of the robotic prosthetic hand with the help of an EMG electrode placed on the bicep muscle, as well as, a haptic sensory feedback system. The fingertip sensors illustrated a stable linear relationship with force, an even sensitivity to force over the pulp of finger and the medial and lateral sides of the finger above the distal inter-phalangeal joint across the fingertip. Additionally, it had a low cost of construction ($1.00) and the ability to fit on curved surfaces. Two test subjects evaluated the performance of the sensors in combination with the haptic sensory feedback system. The use of the novel sensors allowed for the test subjects to discriminate the forces experienced by each finger when gripping objects of different shapes, with an accuracy of 80% and 73% accuracy respectively. Hence, the fingertip sensors along with haptic feedback can provide a possible solution for amputees to regain the sense a touch and at a low cost. This is a step towards a cost effective ($(pm$ 150)$, yet functional robotic prosthetic hand for amputees.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121377142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. D. Gasperina, M. Gandolla, A. Calcagno, Andrea Costa, L. Aquilante, M. Puchinger, M. Gföhler, F. Braghin, A. Pedrocchi
{"title":"Multi-Modal Human-Machine Control Interfaces of Upper Limb Motorized Exoskeletons for Severely Impaired Patients","authors":"S. D. Gasperina, M. Gandolla, A. Calcagno, Andrea Costa, L. Aquilante, M. Puchinger, M. Gföhler, F. Braghin, A. Pedrocchi","doi":"10.1109/BIOROB.2018.8488001","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8488001","url":null,"abstract":"The aim of this study concerns the evaluation and comparison of different Human-Machine Interfaces for the control of an upper limb motorized exoskeleton for severely impaired patients. Different approaches (i.e. manual, vocal, visual control) are tested in a simulation environment on three subjects affected by muscular dystrophy with the aim of assessing the capability of the system to interact with the user and vice versa. A Graphical User Interface shows the simulated behavior of the exoskeleton to the user which has to perform reaching tasks in the space by moving the exoskeleton end-effector to defined virtual targets that are displayed on the screen. Specific assessment of the interaction of the user with each control interface is achieved, while a quantitative evaluation of the usability of all the three approaches is provided by a System Usability Scale (SUS) questionnaire. All patients were able to interact with all control interfaces without difficulties and to complete reaching tasks in simulation. SUS scores showed overall good usability of the Human-Machine Control Interfaces suggesting that the manual and the vocal control interfaces are preferred by the subjects.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121735764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. D. Luzio, D. Simonetti, F. Cordella, G. Carpino, F. Draicchio, L. Zollo
{"title":"An Adaptive Arm-Weight Support Platform for 3D Upper Limb Robot-Aided Neuro-Rehabilitation","authors":"F. D. Luzio, D. Simonetti, F. Cordella, G. Carpino, F. Draicchio, L. Zollo","doi":"10.1109/BIOROB.2018.8487738","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487738","url":null,"abstract":"Arm-weight support has proved to be a key component in robot-aided neuro-rehabilitation in order to permit a wide range of motion for patients with severe disabilities. In this work, a novel motorized platform for sustaining the upper limb of patients during 3D robot-aided rehabilitation and its control architecture are presented. The proposed system is able to support patient's limb in the 3D space through upper limb kinematic reconstruction during the execution of reaching movements. The platform and the adopted control strategy have been tested on 8 healthy subjects performing point-to-point 3D movements. The trajectory executed by the forearm support has been monitored to assess the performance of the chosen control approach. Moreover, a questionnaire based on the Likert rating scale has been submitted to the subjects to evaluate the overall platform. Preliminary results showed that the proposed control algorithm allowed to follow the arm movement in $pmb{3}mathbf{D}$ space with a reduced position error $(0.002pm 0.012$ rad $)$, Moreover the subjects felt their arm completely supported, free to move in any direction of the space and judged the platform easy to use.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124348022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Kinematic Model for the Design of a Bicondylar Mechanical Knee","authors":"Felix Russell, R. Vaidyanathan, P. Ellison","doi":"10.1109/BIOROB.2018.8487734","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487734","url":null,"abstract":"In this paper we present a design methodology for a bicondylar joint that mimics many of the physical mechanisms in the human knee. We replicate the elastic ligaments and sliding and rolling joint surfaces. As a result the centre of rotation and moment arm from the quadriceps changes as a function of flexion angle in a similar way to the human knee. This leads to a larger moment arm in the centre of motion, where it is most needed for high load tasks, and a smaller moment arm at the extremes, reducing the required actuator displacement. This is anticipated to improve performance:weight ratio in legged devices for tasks such as stair accent and sit-to-stand. In the design process ligament attachment positions, femur profile and ligament lengths were taken from cadaver studies. This information was then used as inputs to a simplified kinematic computer model in order to design a valid profile for a tibial condyle. A physical model was then tested on a custom built squatting robot. It was found that although ligament lengths deviated from the designed values the robot moment arm still matched the model to within 6.1% on average. This shows that the simplified model is an effective design tool for this type of joint. It is anticipated that this design, when employed in walking robots, prostheses or exoskeletons, will improve the high load task capability of these devices. In this paper we have outlined and validated a design method to begin to achieve this goal.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124534685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karen Rodriguez, J. H. Groot, F. Baas, M. Stijntjes, F. C. T. Helm, H. Kooij, W. Mugge
{"title":"Passive Ankle Joint Stiffness Compensation by a Novel Ankle-Foot-Orthosis","authors":"Karen Rodriguez, J. H. Groot, F. Baas, M. Stijntjes, F. C. T. Helm, H. Kooij, W. Mugge","doi":"10.1109/BIOROB.2018.8487784","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487784","url":null,"abstract":"The stiffness of an Ankle-Foot-Orthosis (AFO) that aims to assist walking affects the gait biomechanics of patients with impaired gait. In patients with equinus (spastic paresis of the lower leg), impaired gait is a consequence of an increased passive ankle joint stiffness (originated from calf muscles) in combination with reduced active muscle strength. Though standard AFOs affect clinically relevant improvements of gait parameters, their designs interfere with the range of motion of the ankle joint. We hypothesize that, by lowering the total passive ankle joint stiffness with the AFO, patient's active range of motion will increase while supporting the patients' muscle forces during gait. We propose a novel AFO design with negative stiffness (nAFO) produced by a spring-loaded CAM follower mechanism. The aim of the device is to compensate for the passive stiffness caused by the calf muscles. This study describes the design, evaluation and walk-ability of the prototype nAFO. Results of the evaluation showed the required compensatory negative stiffness −57.4Nm. rad−1 (in patients up to 76Nm. rad-1) to balance plantar-flexion torque along the range of motion for walking (0.44rad [25°] plantar-flexion to 0.33rad [19°] dorsi-flexion). Assessment on a healthy subject showed passive compensation up to 43.87%. During gait, Tibialis Anterior muscle forces were supported by the nAFO, as observed by a reduced electromyographic signal during swing phase. Though hysteresis of the device has to be reduced, the possibility to compensate for high passive joint stiffness shows promise to increase the active range of motion of the ankle of patients with equinus.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127757058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Kramer, Yasuhiro Akiyama, Yusuke Fukui, Yoji Yamada
{"title":"The Change of Gait Motion During Curvilinear Obstacle Avoidance While Restricted by a Wearable Robotic Device","authors":"E. Kramer, Yasuhiro Akiyama, Yusuke Fukui, Yoji Yamada","doi":"10.1109/BIOROB.2018.8487184","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487184","url":null,"abstract":"Lower limb wearable robotic devices designed to aid humans in motion tend to have reduced degrees of freedom (DoF) when compared to human legs. These limit the wearer movement and as a result significantly alter common gait types. One motion that is very integral to everyday life is obstacle avoidance in the form of a curvilinear path. To evaluate the effects a physical assistant robot (PAR) has on such a motion, we conducted a study to compare the gait dynamics of a test subject with and without the PAR restricting their hip movement out of the sagittal plane as they moved around a “S” shaped path. Results showed that hip rotation is the dominant factor which alters natural gait motion with the PAR's restrictions engaged. Center of mass (CoM) trajectories showed that due to rotation restrictions a stable repeatable path was more difficult to obtain when restricted by the device, especially around smaller radii curves. Hip rotation is thus deemed critical to fluid turning and movement of this DoF should be an important factor when designing PAR devices that are used to make curvilinear motions.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126477207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viviane C. R. Appel, Rafael Eras-Garcia, G. R. Chiqueti, L. M. Pedro, D. Cruz, G. Caurin
{"title":"Novel Assessment Measures of Upper-Limb Function in Pre and Poststroke Rehabilitation: A Pilot Study","authors":"Viviane C. R. Appel, Rafael Eras-Garcia, G. R. Chiqueti, L. M. Pedro, D. Cruz, G. Caurin","doi":"10.1109/BIOROB.2018.8487882","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487882","url":null,"abstract":"Hand function assessment is essential for upper limb rehabilitation of stroke survivors. Conventional acquisition devices have inherent and restrictive difficulties for their clinical usage. Data gloves are limited for applications outside the medical environment, and motion tracking systems setup are time and personnel demanding. We propose a novel instrument designed as a replica of a glass, equipped with an omnidirectional vision system to capture hand images and an inertial measurement unit for movements kinematic data acquisition. Four stroke survivors were invited as volunteers in pre and post-treatment experiments for its evaluating. The exercise of drinking water from a glass was elected for the trails. Before treatment, subjects used their contralesional and ipsilateral hands to perform them. Two main functional features were found in the data analysis. There were differences between limbs in the grasping hand postures, mainly in the index and thumb abduction angle, and in the task timing. After treatment, two volunteers repeated the protocol with their contralesional hands. Changes in the features were observed, index and thumb abduction angles were greater in both cases, and tasks timing were altered in distinct ways. These preliminary results suggest the instrument can be used both in evaluation of hand functional deficit and rehabilitation progress. Improvements and future work are also presented.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126484477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier L. Castellanos-Cruz, Maria F. Gomez-Medina, M. Tavakoli, P. Pilarski, K. Adams
{"title":"Preliminary Testing of a Telerobotic Haptic System and Analysis of Visual Attention During a Playful Activity","authors":"Javier L. Castellanos-Cruz, Maria F. Gomez-Medina, M. Tavakoli, P. Pilarski, K. Adams","doi":"10.1109/BIOROB.2018.8487612","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487612","url":null,"abstract":"Children with physical impairments face great challenges to play because of their limitations, for example, in reaching and grasping obj ects. Children with physical impairments can improve their independence, cognitive, and social skills by playing using robots. In this study, we developed a telerobotic haptic system with two haptic robots, one that is for a child and the other to interact with the environment. The goal of this study was to do preliminary tests of the haptic guidance method and the prediction of targets. Another goal was to explore and analyze the visual attention of the participants during the activity when eye-hand discoordination was induced. Five adults without disabilities played a whack-a-mole game using the robotic system, to assure that the robot works adequately before children with disabilities use it. The robots were programmed to induce eye-hand discoordination, so that haptic guidance would be required. A multi-layer perceptron neural network was implemented to predict the target moles that the participants had to reach, which in future versions, will control the activation of forbidden region virtual fixtures (FRVF) to guide the user towards the target moles. Analysis of participant's eye gaze led to the hypothesis that the less control a person has over the teleoperation system, the less they will look at the target. On average, the accuracy of the target prediction by the neural network was 70.7%. The predicting of targets will allow the robot to assist children during movement of the robot towards the target toy, without needing the children to explicitly point out with their gaze which toy they want to reach. This will potentially lead to a more intuitive and faster human-robot interaction.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126520067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Durandau, Wolfgang F. Rampeltshammer, H. Kooij, Massimo Sartori
{"title":"Toward Muscle-Driven Control of Wearable Robots: A Real-Time Framework for the Estimation of Neuromuscular States During Human-Exoskeleton Locomotion Tasks","authors":"G. Durandau, Wolfgang F. Rampeltshammer, H. Kooij, Massimo Sartori","doi":"10.1109/BIOROB.2018.8487723","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487723","url":null,"abstract":"The ability to efficiently assist human movement via wearable robotic exoskeletons requires a deep understanding of human-exoskeleton physical interaction. That is, how the exoskeleton affects human movement and how the human body reacts to robotic assistance. In this context, it is central to gain access to human neuromuscular states, i.e. neural activation to muscle, muscle fibers short-stretch cycle, tendon strain, musculotendon viscoelasticity. This would enable the personalized design of assistive devices and human-exoskeleton interfaces with respect to a specific subject's anatomy and force-generating capacity. Here we present a real-time electromyography-driven framework interfaced to a robotic bilateral ankle exoskeleton. This framework provides real-time information about joint and underlying muscle mechanics. We provide a quantitative evaluation of the real-time framework across a repertoire of human-exoskeleton locomotion tasks. We also show how this enables understanding how robotic exoskeletons in parallel to human limbs contribute to alter normative musculoskeletal mechanics. This will open new avenues for the creation of symbiotic exoskeleton technologies that operate as an extension of the own body.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131982912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}