Meredith A. Turnbough, A. Eisenberg, Shade Ll, J. Shewale
{"title":"Training of Forensic DNA Scientists - A Commentary.","authors":"Meredith A. Turnbough, A. Eisenberg, Shade Ll, J. Shewale","doi":"10.1201/B15361-20","DOIUrl":"https://doi.org/10.1201/B15361-20","url":null,"abstract":"For the past two decades, forensic DNA analysis has rapidly expanded in both utility and value to criminal investigations. As the number of crime scene and convict/arrestee samples has continued to grow, many forensic DNA laboratories find themselves struggling to test samples in a timely fashion. Agencies employ various methods for calculating their sample intake and processing capacity, yet database and casework sample backlogs continue to present a major challenge. One issue many forensic laboratories face is limited availability of resources for training new analysts. High-quality training enables analysts to effectively perform various aspects of DNA profiling, and as such, it is essential to ensuring consistent, high-quality results. This is well documented in the guidelines established in the FBI's Quality Assurance Standards for Forensic DNA Testing Laboratories in the United States as well as internationally by agencies like INTERPOL. A facility dedicated to training analysts on both theoretical and practical aspects of automated sample processing accelerates the establishment and expansion of high-throughput forensic DNA laboratories. The present article will discuss various aspects of training and agencies that provide such training programs.","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 2 1","pages":"143-50"},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1201/B15361-20","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65986737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Principles, Practice, and Evolution of Capillary Electrophoresis as a Tool for Forensic DNA Analysis.","authors":"J G Shewale, L Qi, L M Calandro","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Capillary electrophoresis (CE) is a versatile and widely used analysis platform with application in diverse areas such as analytical chemistry, chiral separations, clinical, forensics, molecular biology, natural products, organic chemistry, and the pharmaceutical industry. Forensic applications of CE include fragment analysis, DNA sequencing, SNP typing, and analysis of gunshot residues, explosive residues, and drugs. Fragment analysis is a widely used method for short tandem repeat (STR) profiling for human identification (HID) due to the single-base resolution capability of CE. This approach circumvents the tedious and expensive approach of DNA sequencing for STR typing. The high sizing precision, ability to detect fluorescence emitted from multiple dyes, automated electrophoretic runs, and data collection software are key factors in the worldwide adoption of CE as the preferred platform for forensic DNA analysis. The most common CE systems used in forensic DNA analysis include the ABI PRISM® 310, 3100, 3100 Avant, 3130, 3130xl, 3500, and 3500xL Genetic Analyzers (GAs). The 3500 series GAs are developed with features useful for forensic scientists, including a normalization feature for analysis of the data designed to reduce the variation in peak height from instrument to instrument and injection to injection. Other hardware and software features include improved temperature control, radio frequency identification (RFID) tags for monitoring instrument consumables, HID-focused software features, and security and maintenance. </p>","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 2","pages":"79-100"},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34068000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Principles, Practice, and Evolution of Capillary Electrophoresis as a Tool for Forensic DNA Analysis.","authors":"Jaiprakash G. Shewale, Liwei Qi, L. Calandro","doi":"10.1201/B15361-11","DOIUrl":"https://doi.org/10.1201/B15361-11","url":null,"abstract":"Capillary electrophoresis (CE) is a versatile and widely used analysis platform with application in diverse areas such as analytical chemistry, chiral separations, clinical, forensics, molecular biology, natural products, organic chemistry, and the pharmaceutical industry. Forensic applications of CE include fragment analysis, DNA sequencing, SNP typing, and analysis of gunshot residues, explosive residues, and drugs. Fragment analysis is a widely used method for short tandem repeat (STR) profiling for human identification (HID) due to the single-base resolution capability of CE. This approach circumvents the tedious and expensive approach of DNA sequencing for STR typing. The high sizing precision, ability to detect fluorescence emitted from multiple dyes, automated electrophoretic runs, and data collection software are key factors in the worldwide adoption of CE as the preferred platform for forensic DNA analysis. The most common CE systems used in forensic DNA analysis include the ABI PRISM® 310, 3100, 3100 Avant, 3130, 3130xl, 3500, and 3500xL Genetic Analyzers (GAs). The 3500 series GAs are developed with features useful for forensic scientists, including a normalization feature for analysis of the data designed to reduce the variation in peak height from instrument to instrument and injection to injection. Other hardware and software features include improved temperature control, radio frequency identification (RFID) tags for monitoring instrument consumables, HID-focused software features, and security and maintenance.","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 2 1","pages":"79-100"},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1201/B15361-11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65986445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Next-Generation STR Genotyping Kits for Forensic Applications.","authors":"J. Mulero, L. Hennessy","doi":"10.1201/b15361-12","DOIUrl":"https://doi.org/10.1201/b15361-12","url":null,"abstract":"Forensic DNA typing has been a constantly evolving field driven by innovations from academic laboratories as well as kit manufacturers. Central to these technological advances has been the transition from multilocus-probe restriction fragment length polymorphism (RFLP) methods to short tandem repeat (STR) PCR-based assays. STRs are now the markers of choice for forensic DNA typing and a wide variety of commercial STR kits have been designed to meet the various needs of a forensic lab. This review provides an overview of the commercial STR kits made available since the year 2000 and explains the rationale for creating these kits. Substantial progress has been made in key areas such as sample throughput, speed, and sensitivity. For example, a significant advancement for databasing labs was the capability of direct amplification from a blood or buccal sample without need for DNA extraction or purification, enabling increased throughput. Other key improvements are greater tolerance for inhibitors (e.g., humic acid, hematin, and tannic acid) present in evidence samples, PCR cycling times decreased by 1-1.5 h, and greater sensitivity with improved buffer components and thermal cycling conditions. These improvements that have been made over the last 11 years have enhanced the ability of forensic laboratories to obtain a DNA profile from more challenging samples. However, with the proliferation of kits from different vendors the primer binding sequences of the loci vary, which could result in discordant events that would need to be resolved either via a database-driven software solution or simply by evaluating discordant samples with multiple kits.","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 1 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1201/b15361-12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65986459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hidden Variation in Microsatellite Loci: Utility and Implications for Forensic DNA Analysis.","authors":"J V Planz, T A Hall","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Short tandem repeat (STR) analysis has been the standard in forensic DNA examinations for almost 15 years. The purpose of this article is to provide some perspective on the biological nature of STR alleles themselves, examine underlying distributions of alleles in the STR loci that are routinely used, and to discuss features of these alleles that are not observable with the currently employed methods. Many of the internationally standardized STR loci contain variations of their interrupted repeat structures, either due to the compound or complex nature of the locus or due to nucleotide variations within the simple repeat motif, which inevitably leads them to become more stratified at the population level. Current STR typing procedures utilizing PCR amplification followed by fragment analysis via capillary or gel electrophoresis does not provide the resolution to discern these polymorphisms. Thus, current designation of alleles is operationally and not biologically defined. Although in the comparison of an evidentiary STR profile to that of a potential contributor, the biological nature of the allele may not be of consequence. When comparisons require assumptions of relatedness between individuals, the biological nature of shared alleles becomes an underlying focus. Herein we will discuss the nature of these additional allelic polymorphisms, what is known of their distribution among the STR loci utilized in forensic testing and within populations, and the advantages this level of allelic discrimination has in forensic and relationship testing. </p>","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 2","pages":"27-42"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33953082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biology and Genetics of New Autosomal STR Loci Useful for Forensic DNA Analysis.","authors":"J M Butler, C R Hill","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Short tandem repeats (STRs) are regions of tandemly repeated DNA segments found throughout the human genome that vary in length (through insertion, deletion, or mutation) with a core repeated DNA sequence. Forensic laboratories commonly use tetranucleotide repeats, containing a four base pair (4-bp) repeat structure such as GATA. In 1997, the Federal Bureau of Investigation (FBI) Laboratory selected 13 STR loci that form the backbone of the U.S. national DNA database. Building on the European expansion in 2009, the FBI announced plans in April 2011 to expand the U.S. core loci to as many as 20 STRs to enable more global DNA data sharing. Commercial STR kits enable consistency in marker use and allele nomenclature between laboratories and help improve quality control. The STRBase website, maintained by the U.S. National Institute of Standards and Technology (NIST), contains helpful information on STR markers used in human identity testing. </p>","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 1","pages":"15-26"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33953079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Autosomal SNPs and Indels in Forensic Analysis.","authors":"C Phillips","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The potential applications of short binary markers to forensic analysis are reviewed. Short binary markers are the most common human genomic variation and include single nucleotide polymorphisms (SNPs) and insertion/deletion polymorphisms (Indels). This review outlines their use and performance in typing highly degraded DNA - the original rationale for developing SNPs for forensic analysis - as well as their ability to infer the ancestry or likely pigmentation characteristics of an individual not present on a national DNA database, thus potentially providing investigative leads. Throughout the review, reference is made to short Indels as a new and potentially powerful alternative to SNPs for enhancing short tandem repeat (STR) results by using a simple amplification to capillary electrophoresis (PCR-to-CE) technique that retains the direct relationship between input DNA and signal strength, offering much improved mixture-detection capabilities while retaining the favorable characteristics of short amplicon PCR. </p>","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 1","pages":"43-62"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33953080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Additional Y-STRs in Forensics: Why, Which, and When.","authors":"K. Ballantyne, M. Kayser","doi":"10.1201/B15361-15","DOIUrl":"https://doi.org/10.1201/B15361-15","url":null,"abstract":"Male-specific DNA profiling using nonrecombining Y-chromosomal genetic markers is becoming ubiquitous in forensic genetics, with many laboratories and jurisdictions taking advantage of the benefits that Y-chromosome short tandem repeat (Y-STR) profiling can bring. The current suite of 9-17 core Y-STRs, available as commercial kits, perform adequately for identifying male lineages in many populations, a feature highly suitable for excluding a male suspect from involvement in crimes such as sexual assaults where autosomal STR profiling is often troubled. However, there is a growing need to achieve higher resolution in paternal-lineage differentiation as adventitious matches between unrelated males are becoming increasingly common with the increasing size of Y-STR haplotype-frequency databases. Furthermore, with the currently used Y-STRs, male relatives (both close and distant) usually cannot be separated, marking a strong limitation in forensic applications as conclusions cannot be drawn on the individual level as desired. Performing Y-chromosome analysis in familial testing, which outperforms autosomal STR profiling in certain deficiency cases, with the current Y-STR sets can be troubled by mutations that complicate relationship-probability estimations. To overcome these limitations, considerable research has been performed over recent years to identify and characterize additional Y-STRs. This review summarizes the forensic performance of current sets of Y-STRs, points out their limitations in the three main areas of forensic Y-STR applications (male-lineage differentiation, male-relative differentiation, and paternity/familial testing), and discusses why and which additional Y-STRs are suitable to improve forensic Y-chromosome analysis in the future.","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 1 1","pages":"63-78"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1201/B15361-15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65986533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Additional Y-STRs in Forensics: Why, Which, and When.","authors":"K N Ballantyne, M Kayser","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Male-specific DNA profiling using nonrecombining Y-chromosomal genetic markers is becoming ubiquitous in forensic genetics, with many laboratories and jurisdictions taking advantage of the benefits that Y-chromosome short tandem repeat (Y-STR) profiling can bring. The current suite of 9-17 core Y-STRs, available as commercial kits, perform adequately for identifying male lineages in many populations, a feature highly suitable for excluding a male suspect from involvement in crimes such as sexual assaults where autosomal STR profiling is often troubled. However, there is a growing need to achieve higher resolution in paternal-lineage differentiation as adventitious matches between unrelated males are becoming increasingly common with the increasing size of Y-STR haplotype-frequency databases. Furthermore, with the currently used Y-STRs, male relatives (both close and distant) usually cannot be separated, marking a strong limitation in forensic applications as conclusions cannot be drawn on the individual level as desired. Performing Y-chromosome analysis in familial testing, which outperforms autosomal STR profiling in certain deficiency cases, with the current Y-STR sets can be troubled by mutations that complicate relationship-probability estimations. To overcome these limitations, considerable research has been performed over recent years to identify and characterize additional Y-STRs. This review summarizes the forensic performance of current sets of Y-STRs, points out their limitations in the three main areas of forensic Y-STR applications (male-lineage differentiation, male-relative differentiation, and paternity/familial testing), and discusses why and which additional Y-STRs are suitable to improve forensic Y-chromosome analysis in the future. </p>","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 1","pages":"63-78"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33953081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Next-Generation STR Genotyping Kits for Forensic Applications.","authors":"J J Mulero, L K Hennessy","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Forensic DNA typing has been a constantly evolving field driven by innovations from academic laboratories as well as kit manufacturers. Central to these technological advances has been the transition from multilocus-probe restriction fragment length polymorphism (RFLP) methods to short tandem repeat (STR) PCR-based assays. STRs are now the markers of choice for forensic DNA typing and a wide variety of commercial STR kits have been designed to meet the various needs of a forensic lab. This review provides an overview of the commercial STR kits made available since the year 2000 and explains the rationale for creating these kits. Substantial progress has been made in key areas such as sample throughput, speed, and sensitivity. For example, a significant advancement for databasing labs was the capability of direct amplification from a blood or buccal sample without need for DNA extraction or purification, enabling increased throughput. Other key improvements are greater tolerance for inhibitors (e.g., humic acid, hematin, and tannic acid) present in evidence samples, PCR cycling times decreased by 1-1.5 h, and greater sensitivity with improved buffer components and thermal cycling conditions. These improvements that have been made over the last 11 years have enhanced the ability of forensic laboratories to obtain a DNA profile from more challenging samples. However, with the proliferation of kits from different vendors the primer binding sequences of the loci vary, which could result in discordant events that would need to be resolved either via a database-driven software solution or simply by evaluating discordant samples with multiple kits. </p>","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33886858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}