{"title":"额外的y - str在取证:为什么,哪一个,何时。","authors":"K. Ballantyne, M. Kayser","doi":"10.1201/B15361-15","DOIUrl":null,"url":null,"abstract":"Male-specific DNA profiling using nonrecombining Y-chromosomal genetic markers is becoming ubiquitous in forensic genetics, with many laboratories and jurisdictions taking advantage of the benefits that Y-chromosome short tandem repeat (Y-STR) profiling can bring. The current suite of 9-17 core Y-STRs, available as commercial kits, perform adequately for identifying male lineages in many populations, a feature highly suitable for excluding a male suspect from involvement in crimes such as sexual assaults where autosomal STR profiling is often troubled. However, there is a growing need to achieve higher resolution in paternal-lineage differentiation as adventitious matches between unrelated males are becoming increasingly common with the increasing size of Y-STR haplotype-frequency databases. Furthermore, with the currently used Y-STRs, male relatives (both close and distant) usually cannot be separated, marking a strong limitation in forensic applications as conclusions cannot be drawn on the individual level as desired. Performing Y-chromosome analysis in familial testing, which outperforms autosomal STR profiling in certain deficiency cases, with the current Y-STR sets can be troubled by mutations that complicate relationship-probability estimations. To overcome these limitations, considerable research has been performed over recent years to identify and characterize additional Y-STRs. This review summarizes the forensic performance of current sets of Y-STRs, points out their limitations in the three main areas of forensic Y-STR applications (male-lineage differentiation, male-relative differentiation, and paternity/familial testing), and discusses why and which additional Y-STRs are suitable to improve forensic Y-chromosome analysis in the future.","PeriodicalId":38192,"journal":{"name":"Forensic Science Review","volume":"24 1 1","pages":"63-78"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1201/B15361-15","citationCount":"25","resultStr":"{\"title\":\"Additional Y-STRs in Forensics: Why, Which, and When.\",\"authors\":\"K. Ballantyne, M. Kayser\",\"doi\":\"10.1201/B15361-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Male-specific DNA profiling using nonrecombining Y-chromosomal genetic markers is becoming ubiquitous in forensic genetics, with many laboratories and jurisdictions taking advantage of the benefits that Y-chromosome short tandem repeat (Y-STR) profiling can bring. The current suite of 9-17 core Y-STRs, available as commercial kits, perform adequately for identifying male lineages in many populations, a feature highly suitable for excluding a male suspect from involvement in crimes such as sexual assaults where autosomal STR profiling is often troubled. However, there is a growing need to achieve higher resolution in paternal-lineage differentiation as adventitious matches between unrelated males are becoming increasingly common with the increasing size of Y-STR haplotype-frequency databases. Furthermore, with the currently used Y-STRs, male relatives (both close and distant) usually cannot be separated, marking a strong limitation in forensic applications as conclusions cannot be drawn on the individual level as desired. Performing Y-chromosome analysis in familial testing, which outperforms autosomal STR profiling in certain deficiency cases, with the current Y-STR sets can be troubled by mutations that complicate relationship-probability estimations. To overcome these limitations, considerable research has been performed over recent years to identify and characterize additional Y-STRs. This review summarizes the forensic performance of current sets of Y-STRs, points out their limitations in the three main areas of forensic Y-STR applications (male-lineage differentiation, male-relative differentiation, and paternity/familial testing), and discusses why and which additional Y-STRs are suitable to improve forensic Y-chromosome analysis in the future.\",\"PeriodicalId\":38192,\"journal\":{\"name\":\"Forensic Science Review\",\"volume\":\"24 1 1\",\"pages\":\"63-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1201/B15361-15\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/B15361-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/B15361-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Additional Y-STRs in Forensics: Why, Which, and When.
Male-specific DNA profiling using nonrecombining Y-chromosomal genetic markers is becoming ubiquitous in forensic genetics, with many laboratories and jurisdictions taking advantage of the benefits that Y-chromosome short tandem repeat (Y-STR) profiling can bring. The current suite of 9-17 core Y-STRs, available as commercial kits, perform adequately for identifying male lineages in many populations, a feature highly suitable for excluding a male suspect from involvement in crimes such as sexual assaults where autosomal STR profiling is often troubled. However, there is a growing need to achieve higher resolution in paternal-lineage differentiation as adventitious matches between unrelated males are becoming increasingly common with the increasing size of Y-STR haplotype-frequency databases. Furthermore, with the currently used Y-STRs, male relatives (both close and distant) usually cannot be separated, marking a strong limitation in forensic applications as conclusions cannot be drawn on the individual level as desired. Performing Y-chromosome analysis in familial testing, which outperforms autosomal STR profiling in certain deficiency cases, with the current Y-STR sets can be troubled by mutations that complicate relationship-probability estimations. To overcome these limitations, considerable research has been performed over recent years to identify and characterize additional Y-STRs. This review summarizes the forensic performance of current sets of Y-STRs, points out their limitations in the three main areas of forensic Y-STR applications (male-lineage differentiation, male-relative differentiation, and paternity/familial testing), and discusses why and which additional Y-STRs are suitable to improve forensic Y-chromosome analysis in the future.