{"title":"Sleep Stage Classification using Laplacian Score Feature Selection Method by Single Channel EEG","authors":"Mahtab Vaezi, M. Nasri","doi":"10.29252/MJEE.14.4.11","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.11","url":null,"abstract":"Sleep is a normal state in humans and the subconscious level of brain activity increases during sleep. The brain plays a prominent role during sleep, so a variety of mental and brain-related diseases can be identified through sleep analysis. A complete sleep period according to the two world standards R&K and AASM consists of seven and five steps, respectively. To diagnose diseases through sleep, it is necessary to identify different stages of sleep because the disorder at each stage indicates a certain disease. On the other hand, efficient and useful features should be selected to increase the accuracy of sleep stage classification. In this paper, at first, different statistical, entropy, and chaotic features are extracted from sleep data. Afterwards, by introducing and using the Laplacian score selector, the best feature set is selected. At the end, some conventional classification algorithms such as SVM, ANN and KNN are used to classify different sleep stages. Simulation results confirms the superiority of the proposed method based on the classification results. With the proposed algorithm, 2, 3, 4, 5 and 6 stages of sleep were classified by SVM and decision tree with 98.0%, 98.0%, 97.3%, 96.6%, and 95.0% accuracy, which are more superior to previous method’s results.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"11-19"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44242292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast Islanding Detection for Distribution System including PV using Multi-Model Decision Tree Algorithm","authors":"R. Ebrahimi, G. Shahgholian, B. Fani","doi":"10.29252/MJEE.14.4.29","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.29","url":null,"abstract":"Modern distribution system including Distributed Generation (DG) requires reliable and fast islanding detection algorithms in order to determine the grid status. In this paper, a new multi-model classification-based method is proposed, in order to detect islanding condition for photovoltaic units. Decision tree is chosen as the classification algorithm to classify input feature vectors. The final result is based on voting among three decision tree algorithms. First order derivatives of electrical parameters are employed to construct feature vectors. To cover intermittent nature of renewable sources, different generating states for PV unit are assumed. Probable events are simulated under different system operating states to generate classification data set. The proposed method is tested on typical distribution system including the PV unit, different loads, and synchronous generator. This study showed that this method succeeds in highly fast islanding detection. This quick response can be used in micro-grid application as well as anti-islanding strategy. The results revealed that the proposed voting-base algorithm could classify instances with very high accuracy which leads to reliable operation of distributed generation units.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"29-38"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45692472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Low-power, CMOS Optical Communication Receiver System for 5Gbps Applications based on RGC Structure","authors":"Sima Honarmand, Soorena Zohoori, K. Abbasi","doi":"10.29252/MJEE.14.4.57","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.57","url":null,"abstract":"An optical communication receiver system is presented in this research using 65nm CMOS, which consists of three low-power active differential stages as Limiting Amplifier (LA) following an ultra-low-power RGC-Based Transimpedance Amplifier (RB-TIA). The presented active circuit of the RB-TIA is followed by a gain stage that extends the -3dB frequency of the circuit by creating a resonance for the load capacitance. Thus, needless of consuming extra power, a wide-bandwidth circuit has been designed. In addition, employing active-inductor loads within the LA stages enables obtaining a 5Gbps receiver system. The RB-TIA consumes 573µW and provides 3.52GHz frequency, while the complete optical receiver consumes only 4.76mW power to provide -3dB frequency of 3.5GHz and high gain of 80dB (10’000). The circuits have been mathematically presented and discussed, and simulations have justified the presented circuit design.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"57-66"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48608175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oryza Wisesa, A. Andriansyah, Osamah Ibrahim Khalaf
{"title":"Prediction Analysis for Business To Business (B2B) Sales of Telecommunication Services using Machine Learning Techniques","authors":"Oryza Wisesa, A. Andriansyah, Osamah Ibrahim Khalaf","doi":"10.29252/MJEE.14.4.145","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.145","url":null,"abstract":"Sales prediction analysis requires intelligent data mining techniques with accurate prediction models and high reliability. In most cases, business highly relies on information as well as demand forecast of the sales trends. This research uses B2B sales data for analysis. The B2B data could provide information on how telecommunication company should manage its sales team, products, and budgeting flows. The accurate estimates enable Telecommunication company to survive the market war and increase with market growth. Comprehensible predictive models were studied and analyzed using a technique of machine learning to improve the prediction of the future sale. It is hard to cope with big data and sale prediction accuracy if the system of traditional forecast is used. In this study, machine learning technique was also used to analyze the reliability of B2B sales. In addition, at the end of this research, other measures and techniques used to predict sales were introduced. The predictive model with best performance evaluation is recommended to forecast the trending B2B sales. The study results are put into an order of reliability and accuracy of the best method to predict and forecast including estimation, evaluation, and transformation. The best performance model found was Gradient Boost Algorithm. The result form graph the data close together from beginning till end of data target MSE and MAPE result are the best result than other method, MSE =24.743.000.000,00 and MAPE =0,18. This model performed maximum accuracy in predicting and forecasting of the future B2B sales.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"145-153"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48282314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroencephalography Artifact Removal using Optimized Radial Basis Function Neural Networks","authors":"S. S. S. Farahani, M. M. Arefi, A. H. Zaeri","doi":"10.29252/MJEE.14.4.133","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.133","url":null,"abstract":"Electroencephalography (EEG) is a major clinical tool to diagnose, monitor and manage neurological disorders which is mostly affected by artifacts. Given the importance and the need for an automated method to remove artifacts, in this paper some intelligent automated methods are proposed which are composed of three main parts as extraction of effective input, filtering and filter optimization. Wavelet transform is utilized to extract the effective input, and the wavelet approximation coefficients are used as an effective input signal. In addition, Radial Basis Function Neural Network (RBFNN) has been used for filtering. The appropriate number of RBFs has been selected using extensive simulations, and the optimal value of spread parameter has been achieved by Bees algorithm (BA). Finally, the proposed artifact removal schemes have been evaluated on some real contaminated EEG signals in Mashad Ghaem hospital database. The results show that the proposed artifact removal schemes are able to effectively remove artifacts from EEG signals with little underlying brain signal distortion.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"133-144"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44587103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sliding Mode Contact Force Control of n-Dof Robotics by Force Estimation","authors":"M. Namnabat, A. H. Zaeri, M. Vahedi","doi":"10.29252/MJEE.14.4.1","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.1","url":null,"abstract":"Control of the force exerted on an object is important for boosting system performance in robotics manipulators. Any undesired applied force may leave remarkable effects on the system, with the potential to damage the object. In addition, measuring external force is another challenge associated with such cases. Proposing an appropriate force estimation algorithm is a solution to overcome this deficiency. In this research, a control strategy is proposed to control the external force applied on the n-dof robotics. To eliminate force measurement in the controller, a force estimation strategy based on a disturbance observer is employed. Subsequently, a sliding-mode based control is implemented to cope with the force estimation error. The closed-loop stability of the system in the presence of estimated force is analytically considered. The proposed algorithm was implemented on piezoelectric actuators as the experimental setup. The experimental results confirm that by employing the proposed control scheme, precise force control is achievable. The force estimation algorithm can also suitably estimate external force.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"32 4","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41304569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sophisticated Microgrid Communication System Management","authors":"Maytham Khudhair Abbas, Emad Jadeen Abdualsada Alshebaney, Mohammed Madhi Faraj Janabi","doi":"10.29252/MJEE.14.4.123","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.123","url":null,"abstract":"Conversation and assurance issues play a crucial function when talking regarding to the wise grid. This particular paper presents opportunities of testing power framework assurance transfers and correspondence standards for smart supply. A depiction in the Smart Grid lab hardware and the key protection devices is usually presented in the paper. Further employ cases and uses offered by the Labrador equipment are referred to and the possibilities by dynamically setting up devices and program interaction are demonstrated. Ideas for the mix of checked and controllable decentralized vitality sources are demonstrated the network capacity and Quality of Services (QoS) are tested and evaluated. By implementing adaptive modulation scheme, the served users were increased by 10% at heavy Traffic Load (TL).","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"123-132"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42188120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, Optimization and Prototype of a Multi-Phase Fractional Slot Concentrated Windings Surface Mounted on Permanent Magnet Machine","authors":"Amir Nekoubin, J. Soltani, M. Dowlatshahi","doi":"10.29252/MJEE.14.4.75","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.75","url":null,"abstract":"The multi-phase permanent-magnet motors are suitable choices for certain purposes like aircrafts, marine, and electric vehicles due to the fault tolerance and high-power density capabilities. The paper aims to design and prototype an optimized five-phase fractional slot concentrated windings surface mounted permanent magnet motor. To optimize the designed multi-phase motor, a multi-objective optimization technique based on the genetic algorithm method has been applied. The machine design objectives are to minimize mass and loss, subsequently, to determine the best choice of the designed machine parameters. Afterwards, 2-Dimensional Finite Element Method (2D-FEM) has been used to verify the performance of the optimized machine. Finally, the optimized machine has been prototyped. The results of the prototyped machine have validated the results of the theatrical analyses of the machine, and accurate consideration of the parameters improved the performance of the machine.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"75-84"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46400999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Haptic Interface Controller Design using Intelligent Techniques","authors":"N. Kumar, J. Ohri","doi":"10.29252/MJEE.14.4.67","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.67","url":null,"abstract":"Haptic technology has enormous applications in several fields from medical, military, and in our day-to-day life’s products including video games, smartphones, and smart cities. The Haptic Interface Controller (HIC), a key circuitry for interaction between the user and the virtual world, has two main control issues: stability and transparency. These two issues are complementary to each other i.e. emphasis on one will degrade the other and vice-versa. To address this, intelligent control techniques including Genetic Algorithm (GA), Feed-Forward Neural Network (FFNN), and Fuzzy Logic Control (FLC) have been used in design of the HIC. To ensure the performance in real-time, in system parametric uncertainty and delay have been added while designing the HIC so that a balance could be maintained between the two issues.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"67-74"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46581257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Neutron Radiography System based on a 10 MeV Electron Linac","authors":"J. Fantidis, G. Nicolaou","doi":"10.29252/MJEE.14.4.21","DOIUrl":"https://doi.org/10.29252/MJEE.14.4.21","url":null,"abstract":"A thermal neutron radiography unit using the neutrons which emits a 10 MeV electron linac compact has been designed and simulated via MCNPX Monte Carlo code. The facility was carried out for an extensive range of values for the collimator ratio L/D, the main parameter which describes the quality of the produced radiographic images. The results show that the presented facility provides high thermal neutron flux; while with the use of single sapphire filter fulfills all the suggested values which characterize a high quality thermal neutron radiography system. A comparison with other similar facilities indicates that the use of a photoneutron source using a 10 MeV electrons beam is a useful substitutional for radiographic purposes.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"21-28"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49390932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}