Haifeng Zhao, Changxin Lai, Ke Wang, Suhao Qiu, Tianyao Wang, Wenheng Jiang, Jun Liu, Xiangdong Li, Jianfeng Zeng, Yuan Feng
{"title":"Simulation of Mouse Brain Tissue Under Controlled Cortical Impact","authors":"Haifeng Zhao, Changxin Lai, Ke Wang, Suhao Qiu, Tianyao Wang, Wenheng Jiang, Jun Liu, Xiangdong Li, Jianfeng Zeng, Yuan Feng","doi":"10.1115/IMECE2018-88790","DOIUrl":"https://doi.org/10.1115/IMECE2018-88790","url":null,"abstract":"Traumatic brain injury is one of the leading causes of injury and death in both developed and developing countries. Animal models are important preclinical tools for injury level studies. In this study, a finite element (FE) model of mouse brain was constructed to investigate the biomechanical responses of brain tissue during a controlled cortical impact (CCI). Impact of the brain tissue was simulated with varying impact speeds and angles. Computational results indicated that the viscoelastic properties of the brain tissue and the impact angle could greatly influence the injury responses. Comparison with the experimental observation showed that energy based stress parameters such as the von Mises stress has the potential to be descriptive of the injury levels.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122090784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Spurious Wave Reflection at the Interface of Peridynamics and Finite Element Regions","authors":"S. Kulkarni, A. Tabarraei, Xiaonan Wang","doi":"10.1115/IMECE2018-86129","DOIUrl":"https://doi.org/10.1115/IMECE2018-86129","url":null,"abstract":"Peridynamics ability to model crack as a material response removes deficiencies associated with using classical continuum-based methods in modeling discontinuities. Due to its nonlocal formulation, however, peridynamics is computationally more expensive than the classical continuum-based numerical methods such as finite element method. To reduce the computational cost, peridynamics can be coupled with finite element method. In this method, peridynamics is used only in critical areas such as the vicinity of crack tip and finite element method is used everywhere else. The main issue associated with such coupling methods is the spurious wave reflections occurring at the interface of peridynamics and finite elements. High frequency waves traveling from peridynamics to finite element spuriously reflect back at the interface and the amplitude of transmitted waves also alter. In this paper, we take an analytical approach to study this phenomenon of spurious reflections. We study the impact of factors such as horizon size of peridynamic formulation, discretization, and change in mesh size on the amplitude of spuriously reflected waves. Finally, we present a method to reduce these spurious reflections by using Arlequin method.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127304976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Improved Non-Gaussian Statistical Theory of Rubber Elasticity for Short Chains","authors":"V. Morovati, R. Dargazany","doi":"10.1115/IMECE2018-88234","DOIUrl":"https://doi.org/10.1115/IMECE2018-88234","url":null,"abstract":"The mechanical behavior of polymers has long been described by the non-Gaussian statistical model. Non-Gaussian models are generally based on the Kuhn-Grün (KG) distribution function, which itself is derived from the first order approximation of the complex Rayleigh’s exact Fourier integral distribution. The KG function has gained such a broad acceptance in the field of polymer physics that the non-Gaussian theory is often used to describe chains with various flexibility ratios. However, KG function is shown to be only relevant for long chains, with more than 40 segments. Here, we propose a new accurate approximation of the entropic force resulted from Rayleigh distribution function of non-Gaussian chains. The approximation provides an improved version of inverse Langevin function which has a limited error value with respect to the exact entropic force. The proposed function provides a significantly more accurate estimation of the distribution function than KG functions for small and medium-sized chains with less than 40 segments.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130919890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fatigue Life Prediction of Cold Rolled Rotary Shouldered Threaded Connections","authors":"F. Song, M. Du, Ke Li","doi":"10.1115/IMECE2018-87801","DOIUrl":"https://doi.org/10.1115/IMECE2018-87801","url":null,"abstract":"The bottom hole assembly (BHA) of a modern drill string for directional drilling mainly comprises a drill bit, a rotary steerable system, and a measurement while drilling tool. The tools and subs used on a BHA are screwed together through rotary shouldered threaded connections. Each connection is made up with a pin and a box. These connections are the weakest links when the BHA undergoes a large number of revolutions in a curved well section. When the fatigue life of a connection is consumed during a drilling job, a twist-off would occur, which could result in an enormous amount of non-productive time and possibly loss of the bottom BHA section in the hole. Cold rolling has proven to be able to improve fatigue resistance of a threaded connection by pressing a rolling wheel against the thread root and generating a layer of compressive residual stress at the root. Understanding how cold rolling improves fatigue resistance of a threaded connection is important for optimization of the rolling parameters and prediction of the BHA service life in a given drilling condition.\u0000 In this paper, a predictive method is presented for fatigue life of a cold rolled threaded connection. A finite element model was developed to simulate the cold rolling process. The resulting deformation and stress states at the root were carried over through makeup of the pin and the box as well as through cyclic bending of the connection. The fatigue life predictions were found to be in favorable agreement with the experimental measurements from full-scale fatigue tests at different bending moment levels applied.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121058756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Construction of a Tilted Cuboid Mechanical Metamaterial","authors":"Yunfang Yang, Z. You","doi":"10.1115/IMECE2018-87050","DOIUrl":"https://doi.org/10.1115/IMECE2018-87050","url":null,"abstract":"Functional metamaterials are gradually becoming the frontier of scientific research and industrial applications. Among them, reconfigurable mechanical metamaterial with inbuilt motion capability could result in unusual physical properties such as shape tunability and programmable density and stiffness. Inspired by the transformable cuboid structure that was first investigated by Ron Resch, we proposed a tilted cuboid structure that can fold into a 3D configuration. By designing the individual building units, face angles and tessellation pattern, we are able to construct a series of reconfigurable structures with various shape, twist and permeability feature. Based on our approach, a configuration method to build multi-layer metamaterial is proposed, and it can be generalized to other tilted structures with different building units. The volumetric strains of different models are analyzed, and the result shows the metamaterial has a massive deformation ability as the maximum volume can be four times of the packaged volume. The tilted cuboid structure is highly flexible with variable stiffness and permeability, and can be used to develop metamaterials, large deformation devices and kinetic architectures.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116754190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrity Evaluation of Composite Cylindrical Structures","authors":"J. Du","doi":"10.1115/IMECE2018-87158","DOIUrl":"https://doi.org/10.1115/IMECE2018-87158","url":null,"abstract":"The application of composite material in structures can not only lower the component weight but also improve the system performance through its tailorable thermal and mechanical properties. However, because of the harsh environmental conditions that such structures may encounter during operation, the successful applications of such structures cannot be realized without appropriate techniques for their structural integrity evaluation.\u0000 In this study, composite cylindrical structures consisting of composite and steel layers are being evaluated with X-ray diffraction technique and various ultrasound techniques. First, X-ray diffraction technique was applied for the quantitative determination of the residual stress in the steel layer. The influence of composite layer on the stress distribution was analyzed and how such residual stress study will improve the performance of the structure was discussed. Then various ultrasound techniques were applied for the detection of various defects, such as the defects at the surface and subsurface of inner steel layer, the different types of defects in the outer composite layer, and the defect, which is the most critical one, at the interface of steel/composite layer. During ultrasound evaluation, the composite material may not only increase the ultrasound attenuation but also change ultrasound traveling direction, and this can make the inspection more challenging. Theoretical calculations were carried out for the optimization of experimental parameters such as ultrasound frequency, incident angle, and focused ultrasound field calculation and so on. The limitations of ultrasound technique and the potential of other non-destructive techniques were also discussed according to experimental results.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131066992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal Shrinkage Behavior of Battery Separator","authors":"Shutian Yan, Jie Deng, Chulheung Bae, Xinran Xiao","doi":"10.1115/IMECE2018-86621","DOIUrl":"https://doi.org/10.1115/IMECE2018-86621","url":null,"abstract":"Battery separators are thin, porous membrane of 20∼30 microns thickness. Polymer separators display a significant amount of shrinkage at elevated temperatures. It is difficult to quantitatively characterize the large shrinkage behavior with a free standing separator sample. This paper examines the use of a dynamic mechanical analyzer under tensile mode in measuring the coefficient of thermal expansion (CTE) of three commonly used separators.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129188165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. T. Ikikardaslar, F. Delale, M. Ardebili, Salih Yıldız, Kenneth Gollins
{"title":"Locating and Quantifying Through Circular Damage in CNT/GFRP Composite Panel Using Gaussian Fit","authors":"K. T. Ikikardaslar, F. Delale, M. Ardebili, Salih Yıldız, Kenneth Gollins","doi":"10.1115/IMECE2018-87681","DOIUrl":"https://doi.org/10.1115/IMECE2018-87681","url":null,"abstract":"Previously published articles on detecting damage in electrically conductive panels mainly concentrate on electrical impedance tomography methods (EIT) which are based on using surface bounded boundary electrodes and taking advantage of an electrically conductive layer on the surface of the panel or of a conductive matrix material. In this study instead, embedded electrodes in glass fiber reinforced epoxy panels are used to locate and quantify the artificial damage inflicted on the panel. The panel was manufactured using vacuum infusion method. It consisted of 10 (S-2) glass fabric plies, where copper electrodes were embedded below the top layer and then vacuum infused with carbon nanotube (CNT) mixed epoxy. During all measurements, a constant electrical current was supplied from two outer electrodes (the source and sink) and changes in voltage from the two inner probes were recorded. In contrast to EIT methods, no complicated algorithm is used to solve the conductivity distribution of the panel but instead, a simple algorithm that fits Gaussian curves to the data obtained using a four-probe measurement technique. Using the fitted curves, we are able to detect location and magnitude of the damages within a confidence bound. This practical method reduces computational cost and also enables the use of embedded electrodes which could provide more durability for the sensors. The experimental data is in very good agreement with the finite element simulations. Comparison of relative voltage change before and after the damages is consistent and sensitive enough to detect damages down to 1/8” diameter hole inside an area of 33 in2. As expected, accuracy is higher for larger diameter holes.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128021348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Single Walled Tank Under Cryogenic Conditions Made of Composite","authors":"P. Kutz, F. Otremba, J. Werner, C. Sklorz","doi":"10.1115/IMECE2018-86365","DOIUrl":"https://doi.org/10.1115/IMECE2018-86365","url":null,"abstract":"The use of glass-fiber reinforced plastic (GRP) can reduce the weight of tanks significantly. By replacing steel with GRP in tanks for gases (propane, etc.) a weight reduction of up to 50 % was reached. In this project not only the material should be optimized, but also the design. Previous tanks consist of a double-walled structure with an insulation layer between the two shells (e.g. vacuum). Goal of this project is to realize a single-walled construction of GRP with an insulation layer on the outside.\u0000 To determine the temperature dependent material values, two different experiments are performed: In the first experiment, temperature dependent material properties of liquid nitrogen found in literature research are validated in a simple setup. The level of liquid nitrogen in a small jar is measured over the experiment time. Numerical simulation shows the change of nitrogen level with sufficient precision. In the second experiment, a liquid nitrogen is applied on one side of a GRP plate. Temperature is measured with thermocouples on top and bottom of the GRP plate, as well as in the middle of the plate. By use of numerical simulation, temperature dependent thermal conductivity is determined.\u0000 In the third experiment, a test stand is designed to examine different insulation materials. In this test stand, the insulation material can easily be changed. A numerical simulation, in which the determined material data is used, is performed as well for this test stand.\u0000 The experiments show, that GRP can be used in cryogenic environments. Multiphase simulations are a suitable tool to describe the energy absorption of thermal energy due to thermal phase change. Results on different insulation materials will follow.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131987683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Relationship Between Average Grain Profile Heights and Plastic Strains in Nickel Polycrystals Under Tensile Plastic Loading","authors":"K. Balusu, Haiying Huang","doi":"10.1115/IMECE2018-88197","DOIUrl":"https://doi.org/10.1115/IMECE2018-88197","url":null,"abstract":"We investigate the relationship between the average profile height and the average plastic strain of a grain in a polycrystalline material under plastic tensile strain using Crystal Plasticity Finite Element Method (CPFEM). The simulation consists of using an anisotropic grain embedded in an isotropic sample undergoing tensile plastic deformation. 150 different lattice orientations for the embedded anisotropic grain are used to represent all possible grain orientations. We found that plastic strain in the loading direction is not related to the surface profile height. However, the plastic strains in the direction normal to the surface and the transverse direction are linearly proportional to the average profile heights, irrespective of the grain orientation. The magnitude of the plastic strain in the direction normal to the surface decreases with increasing surface profile height. It is vice versa for plastic strains in the transverse direction. These results establish a possibility of determining a grain’s plastic strains from the profile height.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129564490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}