{"title":"冷轧旋肩螺纹接头疲劳寿命预测","authors":"F. Song, M. Du, Ke Li","doi":"10.1115/IMECE2018-87801","DOIUrl":null,"url":null,"abstract":"The bottom hole assembly (BHA) of a modern drill string for directional drilling mainly comprises a drill bit, a rotary steerable system, and a measurement while drilling tool. The tools and subs used on a BHA are screwed together through rotary shouldered threaded connections. Each connection is made up with a pin and a box. These connections are the weakest links when the BHA undergoes a large number of revolutions in a curved well section. When the fatigue life of a connection is consumed during a drilling job, a twist-off would occur, which could result in an enormous amount of non-productive time and possibly loss of the bottom BHA section in the hole. Cold rolling has proven to be able to improve fatigue resistance of a threaded connection by pressing a rolling wheel against the thread root and generating a layer of compressive residual stress at the root. Understanding how cold rolling improves fatigue resistance of a threaded connection is important for optimization of the rolling parameters and prediction of the BHA service life in a given drilling condition.\n In this paper, a predictive method is presented for fatigue life of a cold rolled threaded connection. A finite element model was developed to simulate the cold rolling process. The resulting deformation and stress states at the root were carried over through makeup of the pin and the box as well as through cyclic bending of the connection. The fatigue life predictions were found to be in favorable agreement with the experimental measurements from full-scale fatigue tests at different bending moment levels applied.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fatigue Life Prediction of Cold Rolled Rotary Shouldered Threaded Connections\",\"authors\":\"F. Song, M. Du, Ke Li\",\"doi\":\"10.1115/IMECE2018-87801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bottom hole assembly (BHA) of a modern drill string for directional drilling mainly comprises a drill bit, a rotary steerable system, and a measurement while drilling tool. The tools and subs used on a BHA are screwed together through rotary shouldered threaded connections. Each connection is made up with a pin and a box. These connections are the weakest links when the BHA undergoes a large number of revolutions in a curved well section. When the fatigue life of a connection is consumed during a drilling job, a twist-off would occur, which could result in an enormous amount of non-productive time and possibly loss of the bottom BHA section in the hole. Cold rolling has proven to be able to improve fatigue resistance of a threaded connection by pressing a rolling wheel against the thread root and generating a layer of compressive residual stress at the root. Understanding how cold rolling improves fatigue resistance of a threaded connection is important for optimization of the rolling parameters and prediction of the BHA service life in a given drilling condition.\\n In this paper, a predictive method is presented for fatigue life of a cold rolled threaded connection. A finite element model was developed to simulate the cold rolling process. The resulting deformation and stress states at the root were carried over through makeup of the pin and the box as well as through cyclic bending of the connection. The fatigue life predictions were found to be in favorable agreement with the experimental measurements from full-scale fatigue tests at different bending moment levels applied.\",\"PeriodicalId\":375383,\"journal\":{\"name\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fatigue Life Prediction of Cold Rolled Rotary Shouldered Threaded Connections
The bottom hole assembly (BHA) of a modern drill string for directional drilling mainly comprises a drill bit, a rotary steerable system, and a measurement while drilling tool. The tools and subs used on a BHA are screwed together through rotary shouldered threaded connections. Each connection is made up with a pin and a box. These connections are the weakest links when the BHA undergoes a large number of revolutions in a curved well section. When the fatigue life of a connection is consumed during a drilling job, a twist-off would occur, which could result in an enormous amount of non-productive time and possibly loss of the bottom BHA section in the hole. Cold rolling has proven to be able to improve fatigue resistance of a threaded connection by pressing a rolling wheel against the thread root and generating a layer of compressive residual stress at the root. Understanding how cold rolling improves fatigue resistance of a threaded connection is important for optimization of the rolling parameters and prediction of the BHA service life in a given drilling condition.
In this paper, a predictive method is presented for fatigue life of a cold rolled threaded connection. A finite element model was developed to simulate the cold rolling process. The resulting deformation and stress states at the root were carried over through makeup of the pin and the box as well as through cyclic bending of the connection. The fatigue life predictions were found to be in favorable agreement with the experimental measurements from full-scale fatigue tests at different bending moment levels applied.