Journal of Facade Design and Engineering最新文献

筛选
英文 中文
Data-driven and LCA-based Framework for environmental and circular assessment of Modular Curtain Walls 基于数据和生命周期评估的模块化幕墙环境和循环评估框架
Journal of Facade Design and Engineering Pub Date : 2024-07-06 DOI: 10.47982/jfde.2024.305
Luca Morganti, Peru Elguezabal Esnarrizaga, A. Pracucci, Theo Zaffagnini, Veronica Garcia Cortes, Andreas Rudenå, Birgit Brunklaus, Julen Astudillo Larraz
{"title":"Data-driven and LCA-based Framework for environmental and circular assessment of Modular Curtain Walls","authors":"Luca Morganti, Peru Elguezabal Esnarrizaga, A. Pracucci, Theo Zaffagnini, Veronica Garcia Cortes, Andreas Rudenå, Birgit Brunklaus, Julen Astudillo Larraz","doi":"10.47982/jfde.2024.305","DOIUrl":"https://doi.org/10.47982/jfde.2024.305","url":null,"abstract":"To assist the sustainable development of the building sector, designers require tools illustrating the most viable design options. This paper, starting by presenting the opportunities and limitations of the Life Cycle Assessment (LCA) methodology and Digital Product Passport (DPP) instrument when applied to Custom Modules for Curtain Walls, proposes a Semantic Data-driven Framework to facilitate the design of low-carbon and circular façade modules. Based on literature and the practical outcome of the H2020 project Basajaun, this framework integrates computer-aided technologies that manufacturing companies commonly employ to automate an efficient sustainability assessment process using primary data. This solution innovates industrial process management and architectural design and supports the creation of greener products. It also facilitates the output of documents supporting end-of-life scenarios. The development methodology involves investigating required quantitative project data, environmental factors, and circularity information, as well as the definition of flowcharts for the Life Cycle Inventory, extending a best practice for the façade module’s DPP. Furthermore, the methodology implicates data collection and IT implementation and organisation. This is through the definition of an ontology conceived for interconnection between digital systems. The findings shall contribute to implementing the LCA and DPP practices for custom prefabricated façade modules and suggest areas for further development. Challenges include obtaining and sharing data on environmental impacts and circularity, but involving stakeholders and addressing technical limitations can improve sustainability.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141672080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy retrofit with prefabricated timber-based façade modules: pre- and post-comparison between two identical buildings 使用预制木质外墙模块进行节能改造:两座相同建筑的前后对比
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.1.01
Nicola Callegaro, R. Albatici
{"title":"Energy retrofit with prefabricated timber-based façade modules: pre- and post-comparison between two identical buildings","authors":"Nicola Callegaro, R. Albatici","doi":"10.47982/jfde.2023.1.01","DOIUrl":"https://doi.org/10.47982/jfde.2023.1.01","url":null,"abstract":"The introduction of prefabrication into the building façade retrofit market is still difficult due to many financial, economic, and social constraints, as well as technical and performance requirements that differ from those of new construction. The technical feasibility, construction details, and actual comfort and energy-saving benefits provided by the installation of prefabricated façade modules are still being investigated, as is one goal of the specific case study presented here. The Renew-Wall project aims to create a new modular, timber-based, non-intrusive system for retrofitting buildings, developing a series of significant and fully customisable innovations compared to currently available solutions. This paper describes the main properties of the designed prefabricated façade system, with a focus on its energy and thermo-hygrometric performances. Simulation and laboratory tests are compared with an experimental analysis conducted on two identical mock-up buildings (test cells) during a two-year monitoring campaign in which only one of the two test cells was retrofitted. The results show simulated average annual energy savings of 67%, perfectly in line with what was measured on-site. The prefabricated façade system also demonstrates efficient vapour release and a reduced risk of mould and fungus attack.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-saving potential of thermochromic coatings in transparent building envelope components 透明建筑围护结构中热致变色涂层的节能潜力
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.a5
Matthias Fahland, Jolanta Szelwicka, Wiebke Langgemach
{"title":"Energy-saving potential of thermochromic coatings in transparent building envelope components","authors":"Matthias Fahland, Jolanta Szelwicka, Wiebke Langgemach","doi":"10.47982/jfde.2023.2.a5","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.a5","url":null,"abstract":"Advances in the energy management of buildings are essential for reducing the carbon footprint in the building sector. Applying special window coatings of varying optical properties offers new chances for improved energy efficiency. Thermochromic vanadium oxide (VO2) is an important material for this development and is, therefore, one of the most investigated thermochromic materials. It changes its transmittance in the infrared spectral range in response to a changing temperature. In this study, VO2 coating was deposited on ultra-thin flexible glass in a continuous roll-to-roll sputtering process. The thermochromic layer had a thickness of 70 nm, and it was embedded between two zirconium oxide layers of 170 nm each. The luminous transmittance of the stack was 50%. A solar modulation of 9.6% was reached between the low and high-temperature states. The transition temperature between the cold infrared transparent and the warm infrared opaque state was determined to be 22°C. Different application scenarios for this material were evaluated. The modulation of the solar transmittance was calculated for the combination of VO2 with state-of-the-art low-e coatings. Our findings show that such a combination does not offer a benefit for reducing the energy demand of a building. However, a stand-alone implementation of thermochromic coatings has a high potential if the energy consumption of the building is dominated by cooling demands.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SmartWall 智能墙
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.t2
E. Katsigiannis, P. Gerogiannis, I. Atsonios, A. Manolitsis, Maria Founti
{"title":"SmartWall","authors":"E. Katsigiannis, P. Gerogiannis, I. Atsonios, A. Manolitsis, Maria Founti","doi":"10.47982/jfde.2023.2.t2","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.t2","url":null,"abstract":"Following the need of urban areas to maintain the existing building stock and simultaneously upgrade the overall energy performance, the renovation down-to-nZEB state has already become a necessity. In this regard, a vast range of prefabricated solutions have been developed lately. The main objective of such solutions would be not only to constitute an effective system to tackle building energy consumption but also to be versatile in terms of implementation and economic viability. In this regard, an adaptable off-site prefabricated envelope solution with an embodied HVAC system called “SmartWall” has been developed. The SmartWall can minimise thermal losses through the well-insulated envelope while, at the same time, its integrated HVAC system efficiently maintains indoor thermal comfort conditions. This study examines the virtual implementation of the SmartWall as a “Plug-n-Play” renovation solution to reach the nZEB state of a typical apartment in a multi-family residence in Athens. The analysis considers two SmartWall alternatives using conventional and eco-friendly materials. The results indicate a reduction of 88% in primary energy consumption without affecting thermal comfort conditions and highlighting that the nZEB state can be ensured if the SmartWall application is enhanced with photovoltaic modules.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Definition and design of a prefabricated and modular façade system to incorporate solar harvesting technologies 定义和设计预制模块化外墙系统,将太阳能收集技术融入其中
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.t1
Izaskun Alvarez-Alava, P. Elguezabal, Nuria Jorge, Tatiana Armijos-Moya, T. Konstantinou
{"title":"Definition and design of a prefabricated and modular façade system to incorporate solar harvesting technologies","authors":"Izaskun Alvarez-Alava, P. Elguezabal, Nuria Jorge, Tatiana Armijos-Moya, T. Konstantinou","doi":"10.47982/jfde.2023.2.t1","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.t1","url":null,"abstract":"The current research presents the design and development of a prefabricated modular façade solution for renovating residential buildings. The system is conceived as an industrialised solution that incorporates solar harvesting technologies, contributing to reducing energy consumption by employing an “active façade” concept. One of the main challenges was to achieve a highly flexible solution both in terms of geometry and enabling the incorporation of different solar-capturing devices (photovoltaic, thermal, and hybrid). Therefore, to be able to provide alternative customised configurations that can be fitted to various building renovation scenarios. Guided by the requirements and specifications, the design was defined after an iterative process, concluding with a final system design validated and adopted as viable for the intended purpose. A dimensional study for interconnecting all the technologies composing the system was carried out. Potential alternative configurations were assessed under the modularity and versatility perspective, resulting in a set of alternative combinations that better fit the established requirements. Complementarily, the system also integrates an active window solution a component that incorporates an autonomous energy recovery system through ventilation. The main outcome is explicated in a highly versatile modular façade system, which gives existing buildings the possibility to achieve Nearly Zero Energy Building requirements.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automation process in data collection for representing façades in building models as part of the renovation process 作为翻新过程的一部分,在建筑模型中表现外墙的数据收集自动化流程
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.a2
Kepa Iturralde, P. Elguezabal, Asier Mediavila
{"title":"Automation process in data collection for representing façades in building models as part of the renovation process","authors":"Kepa Iturralde, P. Elguezabal, Asier Mediavila","doi":"10.47982/jfde.2023.2.a2","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.a2","url":null,"abstract":"A key barrier in building-facade renovation processes is that, contrary to new designs, an initial building model where the design process is based rarely exists, and the technologies usually employed to create it (e.g., based on point cloud scanning) are costly or require modeling skills. This situation is a clear limitation, especially in early decision stages, where the level of detail required is not very high, and the analysis and studies to consider the renovation plan (e.g., simplified energy simulations and renovation potential, or estimation of the number, types, and dimensions of the prefabricated modules incorporating solar panels) highly depend on such digital models. This paper introduces a process that, based on freely available data such as open GIS sources (local Cadasters, OpenStreetMap…) and façade images, can semi-automatically generate the 3D building model of the existing conditions, and in a second step also suggests the prefabricated facades module layout for building upgrades. Additionally, no onsite visit is needed. When the upgrade is focused on the façade, a big opportunity is identified for generating the building model and a realistic representation of its envelope, only using online data sources as input. The process developed consists of a set of easy-to-use software tools that can be used independently or combined in a workflow, depending on the available data and starting conditions. Time saving is very clear and costs can be reduced.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional façades for renovation through industrialization 通过工业化改造的多功能外墙
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.00
Maria Founti, S. Avesani, P. Elguezabal
{"title":"Multifunctional façades for renovation through industrialization","authors":"Maria Founti, S. Avesani, P. Elguezabal","doi":"10.47982/jfde.2023.2.00","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.00","url":null,"abstract":"This Special Issue compiles results of EU H2020 funded projects working on the development of multi-functional envelope solutions for deep renovation of buildings. The projects have a common and aligned objective to develop and demonstrate plug & build smart components, including insulation materials, heating and cooling elements, ventilation, smart windows, energy production, solar harvesting, and storage with necessary connecting and controlling parts to be integrated in a prefabricated envelope system. They highlight that plug & build solutions are suitable for mass production by industry for buildings undergoing deep renovation to NZEB standards. They also underline that the development and implementation of digital based technologies can boost the application of such industrialized concepts.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of a multifunctional Plug-and-Play façade using a set-based design approach 采用基于集合的设计方法实现多功能即插即用外墙
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.t4
David Masip, Grazia Marrone, Irene Rafols Ribas
{"title":"Implementation of a multifunctional Plug-and-Play façade using a set-based design approach","authors":"David Masip, Grazia Marrone, Irene Rafols Ribas","doi":"10.47982/jfde.2023.2.t4","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.t4","url":null,"abstract":"An immediate paradigm shift is needed to transform the deep renovation market for improved building performance and expanded energy efficiency horizons. The financial, social, and sustainability challenges of the EU targets suggest research towards reliable, inter-compatible, and interoperable solutions aiming at combining different energy conservation measures. This work proposes the implementation of a lightweight Plug-and-Play (PnP) building system for façade renovation using a set-based design approach. The PnP module, based on a main structure in the form of a Light Steel Frame (LSF) and a metal-faced sandwich panel, is combined with various market-ready components. The efficient integration of these third-party products is highlighted by defining and demonstrating the design process, implementing a solution driven by the reach of a highly industrialised solution, easy to assemble and install, customizable, scalable, and adaptable to the existing buildings. With the set-based design matrix, different integration scenarios are investigated through virtual prototypes. Moreover, to facilitate the shift from design to construction of the integrated PnP module, the study proposes three prototyping levels to demonstrate the efficiency of the design integration methodology and the technical feasibility of both the various module's configurations and the overall module, exploring them through the realisation of preliminary, full-scale façade and actual environment-applied prototypes.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Off-site prefabricated hybrid façade systems 场外预制混合外墙系统
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.a1
I. Atsonios, E. Katsigiannis, Andrianos E. Koklas, Dionysis Kolaitis, Maria Founti, C. Mouzakis, C. Tsoutis, Daniel Adamovský, Jaume Colom, Daniel Philippen, Alberto Diego
{"title":"Off-site prefabricated hybrid façade systems","authors":"I. Atsonios, E. Katsigiannis, Andrianos E. Koklas, Dionysis Kolaitis, Maria Founti, C. Mouzakis, C. Tsoutis, Daniel Adamovský, Jaume Colom, Daniel Philippen, Alberto Diego","doi":"10.47982/jfde.2023.2.a1","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.a1","url":null,"abstract":"The residential sector is responsible for the largest share of global energy consumption, while the existing building stock in Europe is relatively old. This issue, in combination with the low rate of new constructions, highlights the necessity for deep renovation of existing buildings to reach NZEB standards. At the same time, in the last decades, off-site prefabricated solutions have gained popularity in the building market, allowing the reliable and effective integration of diverse components and reducing the total renovation cost and occupants’ disturbance. The current study describes three all-in-one “Plug & Play” prefab renovation solutions and their assessment in terms of thermal, static, acoustic, and fire performance. The assessing performance is selected depending on their incorporated element as well as the national regulations of the country where the renovation solution is going to be installed. The assessment aims to ensure their characteristics’ satisfaction with the European and national requirements. In parallel, the assessment identifies the accurate behaviour of prefab façade systems both in passive and active mode and improves/optimises any possible design drawbacks.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the circular re-design of prefabricated building envelope elements for carbon neutral renovation 评估预制建筑围护结构的循环再设计,实现碳中和改造
Journal of Facade Design and Engineering Pub Date : 2023-12-23 DOI: 10.47982/jfde.2023.2.a4
Ivar Bergmans, Silu Bhochhibhoya, John Van Oorschot
{"title":"Assessing the circular re-design of prefabricated building envelope elements for carbon neutral renovation","authors":"Ivar Bergmans, Silu Bhochhibhoya, John Van Oorschot","doi":"10.47982/jfde.2023.2.a4","DOIUrl":"https://doi.org/10.47982/jfde.2023.2.a4","url":null,"abstract":"Buildings and the construction industry at large are significant contributors to the catastrophic climate breakdown. The built environment is responsible for 37% of the total global carbon emission, of which about a third arises from the energy used to produce building and construction materials, usually referred to as embodied carbon. One of the key strategies to reduce the environmental impact of buildings is to significantly improve their energy efficiency, which is referred to as deep renovation. Prefabricated building envelope elements intended to prevent heat loss through the building envelope are considered a key deep-renovation technology. Connecting prefabricated elements to a building reflects a potential stream of waste if applied linearly with severe negative environmental impact in terms of natural resource depletion and exposure to pollutants. This article reports on a quantitative Design for Disassembly (Dfd) indicator to assess future recovery potential and, subsequently, its impact on embodied carbon emission of the circular redesign of three different prefabricated building envelope elements. Although none of the redesigned elements are yet considered 100% circular, the development of these three prefabricated building envelope elements showcases that the environmental impact can be substantially reduced following a well-structured and dedicated innovation process. The reduction of the environmental impact is indicated by lower quantities of embodied carbon up to 50% and an improved design for disassembly, reflecting a higher reuse potential of building materials and components. Several limitations and directions for further research were identified to advance the development of circular, prefabricated deep-renovation building envelope elements.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信