透明建筑围护结构中热致变色涂层的节能潜力

Q1 Engineering
Matthias Fahland, Jolanta Szelwicka, Wiebke Langgemach
{"title":"透明建筑围护结构中热致变色涂层的节能潜力","authors":"Matthias Fahland, Jolanta Szelwicka, Wiebke Langgemach","doi":"10.47982/jfde.2023.2.a5","DOIUrl":null,"url":null,"abstract":"Advances in the energy management of buildings are essential for reducing the carbon footprint in the building sector. Applying special window coatings of varying optical properties offers new chances for improved energy efficiency. Thermochromic vanadium oxide (VO2) is an important material for this development and is, therefore, one of the most investigated thermochromic materials. It changes its transmittance in the infrared spectral range in response to a changing temperature. In this study, VO2 coating was deposited on ultra-thin flexible glass in a continuous roll-to-roll sputtering process. The thermochromic layer had a thickness of 70 nm, and it was embedded between two zirconium oxide layers of 170 nm each. The luminous transmittance of the stack was 50%. A solar modulation of 9.6% was reached between the low and high-temperature states. The transition temperature between the cold infrared transparent and the warm infrared opaque state was determined to be 22°C. Different application scenarios for this material were evaluated. The modulation of the solar transmittance was calculated for the combination of VO2 with state-of-the-art low-e coatings. Our findings show that such a combination does not offer a benefit for reducing the energy demand of a building. However, a stand-alone implementation of thermochromic coatings has a high potential if the energy consumption of the building is dominated by cooling demands.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-saving potential of thermochromic coatings in transparent building envelope components\",\"authors\":\"Matthias Fahland, Jolanta Szelwicka, Wiebke Langgemach\",\"doi\":\"10.47982/jfde.2023.2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in the energy management of buildings are essential for reducing the carbon footprint in the building sector. Applying special window coatings of varying optical properties offers new chances for improved energy efficiency. Thermochromic vanadium oxide (VO2) is an important material for this development and is, therefore, one of the most investigated thermochromic materials. It changes its transmittance in the infrared spectral range in response to a changing temperature. In this study, VO2 coating was deposited on ultra-thin flexible glass in a continuous roll-to-roll sputtering process. The thermochromic layer had a thickness of 70 nm, and it was embedded between two zirconium oxide layers of 170 nm each. The luminous transmittance of the stack was 50%. A solar modulation of 9.6% was reached between the low and high-temperature states. The transition temperature between the cold infrared transparent and the warm infrared opaque state was determined to be 22°C. Different application scenarios for this material were evaluated. The modulation of the solar transmittance was calculated for the combination of VO2 with state-of-the-art low-e coatings. Our findings show that such a combination does not offer a benefit for reducing the energy demand of a building. However, a stand-alone implementation of thermochromic coatings has a high potential if the energy consumption of the building is dominated by cooling demands.\",\"PeriodicalId\":37451,\"journal\":{\"name\":\"Journal of Facade Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Facade Design and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47982/jfde.2023.2.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Facade Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/jfde.2023.2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

建筑能源管理的进步对于减少建筑行业的碳足迹至关重要。应用具有不同光学特性的特殊窗户涂层为提高能源效率提供了新的机会。热致变色氧化钒(VO2)是促进这一发展的重要材料,因此也是研究最多的热致变色材料之一。它在红外光谱范围内的透射率会随着温度的变化而变化。在这项研究中,通过辊对辊连续溅射工艺在超薄柔性玻璃上沉积了 VO2 涂层。热致变色层的厚度为 70 nm,嵌入两层各为 170 nm 的氧化锆层之间。叠层的透光率为 50%。低温态和高温态之间的太阳光调制率为 9.6%。冷红外透明态和暖红外不透明态之间的过渡温度被确定为 22°C。对这种材料的不同应用场景进行了评估。计算了将 VO2 与最先进的低辐射涂层结合使用时的太阳透过率调制。我们的研究结果表明,这种组合对减少建筑物的能源需求没有好处。不过,如果建筑物的能耗以制冷需求为主,则单独使用热致变色涂料具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-saving potential of thermochromic coatings in transparent building envelope components
Advances in the energy management of buildings are essential for reducing the carbon footprint in the building sector. Applying special window coatings of varying optical properties offers new chances for improved energy efficiency. Thermochromic vanadium oxide (VO2) is an important material for this development and is, therefore, one of the most investigated thermochromic materials. It changes its transmittance in the infrared spectral range in response to a changing temperature. In this study, VO2 coating was deposited on ultra-thin flexible glass in a continuous roll-to-roll sputtering process. The thermochromic layer had a thickness of 70 nm, and it was embedded between two zirconium oxide layers of 170 nm each. The luminous transmittance of the stack was 50%. A solar modulation of 9.6% was reached between the low and high-temperature states. The transition temperature between the cold infrared transparent and the warm infrared opaque state was determined to be 22°C. Different application scenarios for this material were evaluated. The modulation of the solar transmittance was calculated for the combination of VO2 with state-of-the-art low-e coatings. Our findings show that such a combination does not offer a benefit for reducing the energy demand of a building. However, a stand-alone implementation of thermochromic coatings has a high potential if the energy consumption of the building is dominated by cooling demands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Facade Design and Engineering
Journal of Facade Design and Engineering Engineering-Architecture
CiteScore
1.90
自引率
0.00%
发文量
3
审稿时长
12 weeks
期刊介绍: The Journal of Facade Design and Engineering presents new research results and new proven practice in the field of facade design and engineering. The goal is to improve building technologies, as well as process management and architectural design. This journal is a valuable resource for professionals and academics involved in the design and engineering of building envelopes, including the following disciplines: Architecture Façade Engineering Climate Design Building Services Integration Building Physics Façade Design and Construction Management Novel Material Applications. The journal will be directed at the scientific community, but it will also feature papers that focus on the dissemination of science into practice and industrial innovations. In this way, readers explore the interaction between scientific developments, technical considerations and management issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信