Jonghyuk Baek, Ryan T. Schlinkman, Frank N. Beckwith, Jiun-Shyan Chen
{"title":"A deformation-dependent coupled Lagrangian/semi-Lagrangian meshfree hydromechanical formulation for landslide modeling","authors":"Jonghyuk Baek, Ryan T. Schlinkman, Frank N. Beckwith, Jiun-Shyan Chen","doi":"10.1186/s40323-022-00233-9","DOIUrl":"https://doi.org/10.1186/s40323-022-00233-9","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"9 1","pages":"1-35"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41893536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermo-mechanical simulations of powder bed fusion processes: accuracy and efficiency","authors":"C. Burkhardt, P. Steinmann, J. Mergheim","doi":"10.1186/s40323-022-00230-y","DOIUrl":"https://doi.org/10.1186/s40323-022-00230-y","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45014068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A partitioned material point method and discrete element method coupling scheme","authors":"Singer, Veronika, Sautter, Klaus B., Larese, Antonia, Wüchner, Roland, Bletzinger, Kai-Uwe","doi":"10.1186/s40323-022-00229-5","DOIUrl":"https://doi.org/10.1186/s40323-022-00229-5","url":null,"abstract":"Mass-movement hazards involving fast and large soil deformation often include huge rocks or other significant obstacles increasing tremendously the risks for humans and infrastructures. Therefore, numerical investigations of such disasters are in high economic demand for prediction as well as for the design of countermeasures. Unfortunately, classical numerical approaches are not suitable for such challenging multiphysics problems. For this reason, in this work we explore the combination of the Material Point Method, able to simulate elasto-plastic continuum materials and the Discrete Element Method to accurately calculate the contact forces, in a coupled formulation. We propose a partitioned MPM-DEM coupling scheme, thus the solvers involved are treated as black-box solvers, whereas the communication of the involved sub-systems is shifted to the shared interface. This approach allows to freely choose the best suited solver for each model and to combine the advantages of both physics in a generalized manner. The examples validate the novel coupling scheme and show its applicability for the simulation of large strain flow events interacting with obstacles.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"29 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Lagrangian–Eulerian procedure for the coupled solution of the Navier–Stokes and shallow water equations for landslide-generated waves","authors":"Masó, Miguel, Franci, Alessandro, de-Pouplana, Ignasi, Cornejo, Alejandro, Oñate, Eugenio","doi":"10.1186/s40323-022-00225-9","DOIUrl":"https://doi.org/10.1186/s40323-022-00225-9","url":null,"abstract":"This work presents a partitioned method for landslide-generated wave events. The proposed strategy combines a Lagrangian Navier Stokes multi-fluid solver with an Eulerian method based on the Boussinesq shallow water equations. The Lagrangian solver uses the Particle Finite Element Method to model the landslide runout, its impact against the water body and the consequent wave generation. The results of this fully-resolved analysis are stored at selected interfaces and then used as input for the shallow water solver to model the far-field wave propagation. This one-way coupling scheme reduces drastically the computational cost of the analyses while maintaining high accuracy in reproducing the key phenomena of the cascading natural hazard. Several numerical examples are presented to show the accuracy and robustness of the proposed coupling strategy and its applicability to large-scale landslide-generated wave events. The validation of the partitioned method is performed versus available results of other numerical methods, analytical solutions and experimental measures.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"29 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wu, Yinghan, Shao, Kaixuan, Piccialli, Francesco, Mei, Gang
{"title":"Numerical modeling of the propagation process of landslide surge using physics-informed deep learning","authors":"Wu, Yinghan, Shao, Kaixuan, Piccialli, Francesco, Mei, Gang","doi":"10.1186/s40323-022-00228-6","DOIUrl":"https://doi.org/10.1186/s40323-022-00228-6","url":null,"abstract":"The landslide surge is a common secondary disaster of reservoir bank landslides, which can cause more serious damage than the landslide itself in many cases. With the development of large-scale scientific and engineering computing, many new techniques have been applied to the study of hydrodynamic problems to make up for the shortcomings of traditional methods. In this paper, we use the physics-informed neural network (PINN) to simulate the propagation process of surges caused by landslides. We study different characteristics of landslide surges by changing water depth and particle density. We find that: (1) the landslide surge propagation process simulation method based on the physics-informed neural network has good applicability, and the stages of landslide surge propagation can be well presented; (2) the depth of water influences the landslide surge propagation as the amplitude of the surge increases with deeper water; (3) the particle density of water influences the landslide surge propagation as the fluctuation of the surge is more obvious with larger particle density. Our study is helpful to understand the propagation process of landslide surges more clearly and provides new ideas for the follow-up study of this kind of complex fluid–structure interaction problem.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stachiw, Terrin, Crain, Alexander, Ricciardi, Joseph
{"title":"A physics-based neural network for flight dynamics modelling and simulation","authors":"Stachiw, Terrin, Crain, Alexander, Ricciardi, Joseph","doi":"10.1186/s40323-022-00227-7","DOIUrl":"https://doi.org/10.1186/s40323-022-00227-7","url":null,"abstract":"The authors have developed a novel physics-based nonlinear autoregressive exogeneous neural network model architecture for flight modelling across the entire flight envelope, called FlyNet. When using traditional parameter estimation and output-error methods, aircraft models are captured about a single point in the flight envelope using a first-order Taylor series to approximate forces and moments. To enable analysis throughout the entire operational envelope, the traditional models can be extended by interpolating or stitching between a number of these single-condition models. This paper completes the evolutionary next step in aircraft modelling to consider all second-order Taylor series terms instead of a subset of those and by exploiting the ability of neural networks to capture more complex and nonlinear behaviour for the efficient development of a continuous flight simulation model valid across the entire envelope. This method is valid for fixed- and rotary-wing aircraft. The behaviour of a conventional model is compared to FlyNet using flight test data collected from the National Research Council of Canada’s Bell 412HP in forward flight.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Martin, Reuben H. Kraft, Thomas H. Hannah, Stephen Ellis
{"title":"An energy-based study of the embedded element method for explicit dynamics","authors":"V. Martin, Reuben H. Kraft, Thomas H. Hannah, Stephen Ellis","doi":"10.1186/s40323-022-00223-x","DOIUrl":"https://doi.org/10.1186/s40323-022-00223-x","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A methodology to assess and improve the physics consistency of an artificial neural network regression model for engineering applications","authors":"E. Rajasekhar Nicodemus","doi":"10.1186/s40323-022-00224-w","DOIUrl":"https://doi.org/10.1186/s40323-022-00224-w","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88603207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Cedillo, Ana-Gabriela Núñez, E. Sánchez-Cordero, L. Timbe, E. Samaniego, A. Alvarado
{"title":"Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes","authors":"S. Cedillo, Ana-Gabriela Núñez, E. Sánchez-Cordero, L. Timbe, E. Samaniego, A. Alvarado","doi":"10.1186/s40323-022-00226-8","DOIUrl":"https://doi.org/10.1186/s40323-022-00226-8","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"82 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}