A physics-based neural network for flight dynamics modelling and simulation

IF 2 Q3 MECHANICS
Stachiw, Terrin, Crain, Alexander, Ricciardi, Joseph
{"title":"A physics-based neural network for flight dynamics modelling and simulation","authors":"Stachiw, Terrin, Crain, Alexander, Ricciardi, Joseph","doi":"10.1186/s40323-022-00227-7","DOIUrl":null,"url":null,"abstract":"The authors have developed a novel physics-based nonlinear autoregressive exogeneous neural network model architecture for flight modelling across the entire flight envelope, called FlyNet. When using traditional parameter estimation and output-error methods, aircraft models are captured about a single point in the flight envelope using a first-order Taylor series to approximate forces and moments. To enable analysis throughout the entire operational envelope, the traditional models can be extended by interpolating or stitching between a number of these single-condition models. This paper completes the evolutionary next step in aircraft modelling to consider all second-order Taylor series terms instead of a subset of those and by exploiting the ability of neural networks to capture more complex and nonlinear behaviour for the efficient development of a continuous flight simulation model valid across the entire envelope. This method is valid for fixed- and rotary-wing aircraft. The behaviour of a conventional model is compared to FlyNet using flight test data collected from the National Research Council of Canada’s Bell 412HP in forward flight.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-022-00227-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

The authors have developed a novel physics-based nonlinear autoregressive exogeneous neural network model architecture for flight modelling across the entire flight envelope, called FlyNet. When using traditional parameter estimation and output-error methods, aircraft models are captured about a single point in the flight envelope using a first-order Taylor series to approximate forces and moments. To enable analysis throughout the entire operational envelope, the traditional models can be extended by interpolating or stitching between a number of these single-condition models. This paper completes the evolutionary next step in aircraft modelling to consider all second-order Taylor series terms instead of a subset of those and by exploiting the ability of neural networks to capture more complex and nonlinear behaviour for the efficient development of a continuous flight simulation model valid across the entire envelope. This method is valid for fixed- and rotary-wing aircraft. The behaviour of a conventional model is compared to FlyNet using flight test data collected from the National Research Council of Canada’s Bell 412HP in forward flight.
基于物理的飞行动力学建模与仿真神经网络
作者开发了一种新的基于物理的非线性自回归外源神经网络模型架构,用于整个飞行包线的飞行建模,称为FlyNet。当使用传统的参数估计和输出误差方法时,使用一阶泰勒级数来近似力和力矩,以捕获飞行包线中单个点的飞机模型。为了在整个操作范围内进行分析,可以通过在许多这些单条件模型之间插入或拼接来扩展传统模型。本文完成了飞机建模的下一步进化,考虑了所有二阶泰勒级数项,而不是其中的一个子集,并利用神经网络的能力来捕获更复杂和非线性的行为,从而有效地开发了一个有效的连续飞行仿真模型。该方法适用于固定翼和旋翼飞机。使用从加拿大国家研究委员会收集的贝尔412HP向前飞行的飞行测试数据,将传统模型的行为与FlyNet进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Modeling and Simulation in Engineering Sciences
Advanced Modeling and Simulation in Engineering Sciences Engineering-Engineering (miscellaneous)
CiteScore
6.80
自引率
0.00%
发文量
22
审稿时长
30 weeks
期刊介绍: The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信