Journal of Daylighting最新文献

筛选
英文 中文
Table of contents to volume 7, issue 2 第7卷第2期目录
Journal of Daylighting Pub Date : 2020-12-29 DOI: 10.15627/jd.2020.27
K. W. Fritz
{"title":"Table of contents to volume 7, issue 2","authors":"K. W. Fritz","doi":"10.15627/jd.2020.27","DOIUrl":"https://doi.org/10.15627/jd.2020.27","url":null,"abstract":"","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48044598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover to volume 7, issue 2 第7卷第2期封面
Journal of Daylighting Pub Date : 2020-12-29 DOI: 10.15627/jd.2020.25
{"title":"Cover to volume 7, issue 2","authors":"","doi":"10.15627/jd.2020.25","DOIUrl":"https://doi.org/10.15627/jd.2020.25","url":null,"abstract":"","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45719163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No-Greenery Line and Greenery-View Factor, New Architectural Design Tools 无绿化线和绿化景观因素,新的建筑设计工具
Journal of Daylighting Pub Date : 2020-12-25 DOI: 10.15627/jd.2020.24
B. Matusiak
{"title":"No-Greenery Line and Greenery-View Factor, New Architectural Design Tools","authors":"B. Matusiak","doi":"10.15627/jd.2020.24","DOIUrl":"https://doi.org/10.15627/jd.2020.24","url":null,"abstract":"The paper proposes a new tool for evaluation of the degree of visual contact with the outdoor greenery, the Greenery-View factor (GV), intended to be easy to grasp and simple to use. It starts with the construction of a No-greenery line (similar to the No-sky line) on the vertical section of the building with the neighbouring greenery included. No-greenery line divides the space into a part with the view to the greenery and the rest of the room from which the greenery is not visible. To find out the part of the floor area of the room from which the greenery can be seen, the section-point between the no-greenery line and the line representing the eye-level is projected down at the floor plan. The GV factor stands for the part of the floor area with the view to the greenery expressed as a percentage of the whole floor area of the room. The No-sky line and the No-greenery line can be used together by architects and urban planners as extremely simple and powerful couple of graphical tools. The paper discusses also how the GV factor could be implemented in the new European daylight standard EN-17037 Daylight in buildings (2018). © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"282-286"},"PeriodicalIF":0.0,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43679329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Optical Characteristics of Traditional Portuguese Azulejos: Mixing Colors to Obtain “Cool” Building Façades 葡萄牙传统阿祖利乔斯的光学特性:混合色彩获得“凉爽”的建筑立面
Journal of Daylighting Pub Date : 2020-12-14 DOI: 10.15627/jd.2020.23
L. Bellia, Viviana Del Naja, F. Fragliasso
{"title":"Optical Characteristics of Traditional Portuguese Azulejos: Mixing Colors to Obtain “Cool” Building Façades","authors":"L. Bellia, Viviana Del Naja, F. Fragliasso","doi":"10.15627/jd.2020.23","DOIUrl":"https://doi.org/10.15627/jd.2020.23","url":null,"abstract":"The need to reduce energy consumptions in buildings brings modern research to focus on the use of natural sources. In this context, the interest towards traditional architecture has been fueled, since one of the characteristics identifying it is the intuitive and intrinsic link between the building and the surrounding environment. For example, in Mediterranean traditional buildings the attention to the orientation, the limitation of openings, the use of shading systems, the great thermal inertia of the envelope, the exploitation of natural ventilation and the light colored external coatings are all technical answers to the overheating risks typical of hot climates. In this context, the Portuguese traditional habit to cover building façades in azulejos (square ceramic tiles painted in vivid colors) is undoubtfully an interesting topic. The paper describes optical and chromatic characteristics of four types of azulejos by means of spectral measurements. Obtained results have demonstrated that the chromatic composition of the tiles, despite dark colors are mixed with clear ones, is such to determine visual reflectance values higher than expected. This seems to suggest that, even if the chromatic composition in the past was mostly driven by decorative issues and visual intuitive judgments, the energetic needs were not completely neglected or at least that the traditionally preferred colors were such to obtain a positive effect in enhancing reflected component of daylight. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"273-281"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45144241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Acrylic Panels Applications as Building Materials and Daylighting Devices 丙烯酸面板作为建筑材料和采光设备的应用
Journal of Daylighting Pub Date : 2020-12-12 DOI: 10.15627/jd.2020.22
R. AlQudah, A. Freewan
{"title":"Acrylic Panels Applications as Building Materials and Daylighting Devices","authors":"R. AlQudah, A. Freewan","doi":"10.15627/jd.2020.22","DOIUrl":"https://doi.org/10.15627/jd.2020.22","url":null,"abstract":"Enormous studies have been conducted to enhance the daylighting utilization in buildings either by direct lighting techniques, lighting reflection systems, lighting transporting systems, or by light tracking systems. The current research aims at evaluating acrylic panels as a light transmitting medium and studying their possible applications to bring natural light to inner spaces due to the lack of researches on acrylic sheets. Acrylic panels utilize the total internal reflection phenomena to convey the light for long distances. The research depended on real experiments and real measurements by using physical models with real dimensions. Many design variables had been studied like thickness, length, orientations and surroundings materials. The long-term measurements showed that acrylic panels could transmit light 8 times greater than the glass sheets, and the thickness of 20 mm for the acrylic glass panel, 30 cm collector length, 20cm diffuser length, with a steel surrounding on both sides show a great potential to transmit light up to 3493.3 lux at the diffuser during the peak hours in summer. While the results of the real size daylighting chamber show that the acrylic glass could transmit light up to 580 lux during the peak hours in summer. The study showed that the number and the distribution of acrylic glass panels in the space depend on the needed illuminance task levels. Moreover, the acrylic glass panels could be easily integrated with building materials in walls and roofs.","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42493868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Phasor Method to Estimate Illuminances Due to Parallel Arrays of Light Sources 估计平行光源阵列照度的相量法
Journal of Daylighting Pub Date : 2020-11-30 DOI: 10.15627/JD.2020.21
R. A. Mangkuto, Atthaillah
{"title":"Phasor Method to Estimate Illuminances Due to Parallel Arrays of Light Sources","authors":"R. A. Mangkuto, Atthaillah","doi":"10.15627/JD.2020.21","DOIUrl":"https://doi.org/10.15627/JD.2020.21","url":null,"abstract":"Direct horizontal illuminance along a calculation row due to two parallel arrays of large numbers of identical light sources behaves like a periodic signal with a sinusoidal pattern, which contains useful information for design purpose. This study aims to describe, verify, and discuss the theoretical concept on the superposition of direct horizontal illuminance from both arrays in such configurations, and how to extract the information using the phasor method. Four different approaches are proposed to estimate the total direct horizontal illuminance ET(x) and to verify the concept. Sensitivity analysis is also conducted to observe the influence of each input variable to the resulting ET(x) pattern. The differences between obtained values using the four approaches are found very small, so that the proposed concept is verified. Based on the sensitivity analysis, the luminous intensity distribution of the sources significantly affects the illuminance fluctuation; whereas the impact of lateral position of the calculation row and the spatial phase difference are inconsistent. Overall, the advantage of using phasor method has been demonstrated for this purpose, which is expected to help in understanding the superposition phenomenon of sinusoidal pattern of illuminance, and in achieving the desired spatial contrast. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"246-257"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48125444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Optical Performances Using the Hybrid CPV 利用混合CPV改进光学性能
Journal of Daylighting Pub Date : 2020-11-19 DOI: 10.15627/jd.2020.20
S. E. Himer, A. Ahaitouf
{"title":"Improvement of Optical Performances Using the Hybrid CPV","authors":"S. E. Himer, A. Ahaitouf","doi":"10.15627/jd.2020.20","DOIUrl":"https://doi.org/10.15627/jd.2020.20","url":null,"abstract":"Hybrid Concentrated Photovoltaics (HCPVs) are systems in which additional low-cost silicone solar cells are added to take advantage of the power generated by the diffuse radiation lost when using only multi-junction cells that work only with direct radiation. The work has been tested by simulating the performance of a hybrid CPV system composed of a Fresnel lens associated with a pyramid, multi junction cell as well as additional silicon solar cells. This proposal is compared with an ordinary CPV system and a system based on only silicon solar cells. The simulation results show that the CPV makes it possible to have a high optical efficiency of 94% at the pyramid exit for direct radiation, but this high efficiency rapidly decreases to 0% for diffuse radiation. In this case, the silicon solar cell comes into the scene to converts these diffused or non-concentrated rays into electricity, with an optical efficiency of 85%. It was also found that the Hybrid CPV system was able to increase the power by 21% compared to the CPV system. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"238-245"},"PeriodicalIF":0.0,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43505168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Field-validated Multi-objective Optimization of the Shape and Size of Windows Based on Daylighting Metrics in Hot-summer Mediterranean and Dry Summer Continental Climates 炎热夏季地中海和干燥夏季大陆性气候条件下基于采光指标的窗户形状和大小多目标优化
Journal of Daylighting Pub Date : 2020-11-11 DOI: 10.15627/jd.2020.19
F. Kharvari
{"title":"A Field-validated Multi-objective Optimization of the Shape and Size of Windows Based on Daylighting Metrics in Hot-summer Mediterranean and Dry Summer Continental Climates","authors":"F. Kharvari","doi":"10.15627/jd.2020.19","DOIUrl":"https://doi.org/10.15627/jd.2020.19","url":null,"abstract":"This study aims to determine the optimum size of windows based on the window-to-floor ratio (WFR) for the main cardinal directions in Hot-summer Mediterranean (Csa) and Dry Summer Continental (Dsa) climates (Köppen–Geiger classification system) by carrying out a multi-objective optimization that relies on three dynamic metrics of Useful Daylight Illuminance (UDI-a (autonomous)), Daylight Autonomy (DA), and Annual Sunlight Exposure (ASE1000,250) in Radiance version 5.1. A validation against field measurements is conducted under an overcast sky with an illuminance of 11000 lux. The Pareto front is used to pick the best solutions for evaluating the most optimized solutions. Accordingly, the minimum standards for cardinal directions in each climate are defined. The minimum suggested WFR for the Dsa and Csa climates for the south-, east-, north-, and west-facing windows are 20%, 15%, 20%, and 15% (Dsa) and 20%, 20%, 25%, and 20% (Csa), respectively. Furthermore, the results show the shape and relative proportions of windows (vertical/horizontal) have a significant effect on the metrics. As a result, this paper introduces the “Proportion Ratio” as a new indicator for designing windows. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"222-237"},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48906229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
The Role of Orosi’s Islamic Geometric Patterns in the Building Façade Design for Improving Occupants’ Daylight Performance Orosi的伊斯兰几何图案在改善居住者日光性能的建筑立面设计中的作用
Journal of Daylighting Pub Date : 2020-11-07 DOI: 10.15627/jd.2020.18
Seyedeh Nazli Hosseini, S. M. Hosseini, Milad HeiraniPour
{"title":"The Role of Orosi’s Islamic Geometric Patterns in the Building Façade Design for Improving Occupants’ Daylight Performance","authors":"Seyedeh Nazli Hosseini, S. M. Hosseini, Milad HeiraniPour","doi":"10.15627/jd.2020.18","DOIUrl":"https://doi.org/10.15627/jd.2020.18","url":null,"abstract":"The form of the building facade significantly affects the amount of useful daylight admitted in the interior space. Striking a balance between the visual comforts of occupants and taking advantage of daylight is always a challenge and, therefore, investigating complex, geometric forms of Orosi patterns can be an effective way of improving visual comfort alongside the aesthetic aspects. Due to intense radiation in the hot and arid climate of Iran, passive strategies were employed for controlling natural light. As a daylight-related component in Iranian vernacular architecture, Orosi offers different functions which are divided into three categories, namely daylight performance, thermal performance, and decorative role. In an attempt to improve indoor daylighting and visual comfort of occupants, this paper investigated, for the first time, the daylight performance of different Islamic geometric patterns (IGPs) used in Orosies with different thicknesses on the West and south facade. To this end, a total number of twelve traditional courtyard houses were studied through a field survey to extract different types of IGPs used in the Orosies. Finally, a grid-based simulation analyzed the indoor daylight conditions through climatic-luminance based metrics. The findings confirmed the daylight performance of the IGPs as a complex geometric form used for the facades. Compared to the base case on the South façade, all the studied patterns offered a significant potential to address the requirements of visual comforts. Additionally, the results revealed the considerable effect of thickness on the daylight performance of IGPs. Based on the results, the 10 and 15 cm thicknesses, showed better results, in comparison with the 5 cm thickness. The 8-Point-Star, as the best choice for the South façade, kept the metrics within an adequate range for occupants. The 8Point-Star provided DA, UDI, EUDI, and sDA values of 80.18%, 76.65%, 12,22%, 44,6 respectively for thicknesses of 10 cm in the bright layer, which is more than twice the UDI value provided by the base model. Furthermore, the results confirmed the poor performance of IGPs on the West façade, particularly with thicknesses of 10 and 15 cm. The 8-Point-Star and 8-Fold-Rossette, as the best choices, improved the daylight performance of the West façade and prevented visual discomfort for occupants. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"201-221"},"PeriodicalIF":0.0,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47532938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Novel Approach to Multi-Apertures and Multi-Aspects Ratio Light Pipe 一种新的多孔径多纵横比光管的设计方法
Journal of Daylighting Pub Date : 2020-09-16 DOI: 10.15627/JD.2020.17
A. Goharian, M. Mahdavinejad
{"title":"A Novel Approach to Multi-Apertures and Multi-Aspects Ratio Light Pipe","authors":"A. Goharian, M. Mahdavinejad","doi":"10.15627/JD.2020.17","DOIUrl":"https://doi.org/10.15627/JD.2020.17","url":null,"abstract":"Daylightophil architecture concept is one of the most significant ways to reduce the electrical load consumption in building sector. In deep-plan buildings, or windowless buildings, advanced light transmission systems are used to compensate lighting demands in highperformance architecture theory. The manuscript is to challenge recent innovations in the light transmission systems, the choice of their type should be commensurate with the architectural design, space performance, and design requirements. Light pipes collect sunlight from the outdoor and transmit in the indoor for illumination. This paper presents analysis of daylight simulation of a novel vertical light pipe, which is embedded in an office building to transmit the light in three room, simultaneously. The light pipe (M-type) has two side apertures and one base aperture (multi-apertures) with different diameters (multi-aspect ratio). To analyze this novel vertical light pipe, a comparison was made with a conventional light pipe (S-type) with side-apertures. First, ray-tracing simulations were performed to investigate the penetration of light beams between the two light pipes. In comparison of level of illuminance between two types of light pipes, the efficiencies were evaluated. Daylight simulations were performed continuously throughout the year during daylight hours; in fact, fixed simulation makes it possible to analyze the effect of the sun altitude angle and the azimuth on the level of illuminance and output light beams direction to the spaces. Also, to investigate the effect of altitude and azimuth angles on the efficiency of the pipe (Mtype) and the direction of light output from the side apertures, altitude and azimuths were selected to simulate the design for providing symmetric sunlight on both sides of the building. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"186-200"},"PeriodicalIF":0.0,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46798843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信