{"title":"FishRecGAN: An End to End GAN Based Network for Fisheye Rectification and Calibration","authors":"Xin Shen, Kyungdon Joo, Jean Oh","doi":"10.48550/arXiv.2305.05222","DOIUrl":"https://doi.org/10.48550/arXiv.2305.05222","url":null,"abstract":"We propose an end-to-end deep learning approach to rectify fisheye images and simultaneously calibrate camera intrinsic and distortion parameters. Our method consists of two parts: a Quick Image Rectification Module developed with a Pix2Pix GAN and Wasserstein GAN (W-Pix2PixGAN), and a Calibration Module with a CNN architecture. Our Quick Rectification Network performs robust rectification with good resolution, making it suitable for constant calibration in camera-based surveillance equipment. To achieve highquality calibration, we use the straightened output from the Quick Rectification Module as a guidance-like semantic feature map for the Calibration Module to learn the geometric relationship between the straightened feature and the distorted feature. We train and validate our method with a large synthesized dataset labeled with well-simulated parameters applied to a perspective image dataset. Our solution has achieved robust performance in high-resolution with a significant PSNR value of 22.343. 1","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131050173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Should ChatGPT and Bard Share Revenue with Their Data Providers? A New Business Model for the AI Era","authors":"Dong Zhang","doi":"10.48550/arXiv.2305.02555","DOIUrl":"https://doi.org/10.48550/arXiv.2305.02555","url":null,"abstract":"With various AI tools such as ChatGPT becoming increasingly convenient and popular, we are entering a true AI era. We can foresee that exceptional AI tools will soon reap considerable profits. A crucial question arise: should AI tools share revenue with their training data providers in additional to traditional stakeholders and shareholders? The answer is Yes. Large AI tools, such as large language models, always require more and better quality data to continuously improve, but current copyright laws limit their access to various types of data. Sharing revenue between AI tools and their data providers could transform the current hostile zero-sum game relationship between AI tools and a majority of copyrighted data owners into a collaborative and mutually beneficial one, which is necessary to facilitate the development of a virtuous cycle among AI tools, their users and data providers that drives forward AI technology and builds a healthy AI ecosystem. However, current revenue-sharing business models do not work for AI tools in the forthcoming AI era, since the most widely used metrics for website-based traffic and action, such as clicks, will be replaced by new metrics such as prompts and cost per prompt for generative AI tools. Therefore, a completely new revenue-sharing business model must be established. This new business model, which must be independent of AI tools and be easily explained to data providers, needs to establish a prompt-based scoring system to measure data engagement of each data provider. This paper systematically discusses how to build such a scoring system for all data providers for AI tools based on classification and content similarity models, and outlines the requirements for AI tools or third parties to build it. AI tools can share revenue with data providers using such a scoring system, which would encourage more data owners to participate in the revenuesharing program. This will be a utilitarian AI era where all parties benefit.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"89 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120879073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN","authors":"Youzhi Liang, Wen-Chieh Liang, Jianguo Jia","doi":"10.54364/AAIML.2023.1165","DOIUrl":"https://doi.org/10.54364/AAIML.2023.1165","url":null,"abstract":"Vibration signals have been increasingly utilized in various engineering fields for analysis and monitoring purposes, including structural health monitoring, fault diagnosis and damage detection, where vibration signals can provide valuable information about the condition and integrity of structures. In recent years, there has been a growing trend towards the use of vibration signals in the field of bioengineering. Activity-induced structural vibrations, particularly footstep-induced signals, are useful for analyzing the movement of biological systems such as the human body and animals, providing valuable information regarding an individual’s gait, body mass, and posture, making them an attractive tool for health monitoring, security, and human-computer interaction. However, the presence of various types of noise can compromise the accuracy of footstep-induced signal analysis. In this paper, we propose a novel ensemble model that leverages both the ensemble of multiple signals and of recurrent and convolutional neural network predictions. The proposed model consists of three stages: preprocessing, hybrid modeling, and ensemble. In the preprocessing stage, features are extracted using the Fast Fourier Transform and wavelet transform to capture the underlying physics-governed dynamics of the system and extract spatial and temporal features. In the hybrid modeling stage, a bi-directional LSTM is used to denoise the noisy signal concatenated with FFT results, and a CNN is used to obtain a condensed feature representation of the signal. In the ensemble stage, three layers of a fully-connected neural network are used to produce the final denoised signal. The proposed model addresses the challenges associated with structural vibration signals, which outperforms the prevailing algorithms for a wide range of noise levels, evaluated using PSNR, SNR, and WMAPE.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129122992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparison of Methods for Neural Network Aggregation","authors":"John Pomerat, Aviv Segev","doi":"10.48550/arXiv.2303.03488","DOIUrl":"https://doi.org/10.48550/arXiv.2303.03488","url":null,"abstract":"Deep learning has been successful in the theoretical aspect. For deep learning to succeed in industry, we need to have algorithms capable of handling many inconsistencies appearing in real data. These inconsistencies can have large effects on the implementation of a deep learning algorithm. Artificial Intelligence is currently changing the medical industry. However, receiving authorization to use medical data for training machine learning algorithms is a huge hurdle. A possible solution is sharing the data without sharing the patient information. We propose a multi-party computation protocol for the deep learning algorithm. The protocol enables to conserve both the privacy and the security of the training data. Three approaches of neural networks assembly are analyzed: transfer learning, average ensemble learning, and series network learning. The results are compared to approaches based on data-sharing in different experiments. We analyze the security issues of the proposed protocol. Although the analysis is based on medical data, the results of multi-party computation of machine learning training are theoretical and can be implemented in multiple research areas.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122358085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-class Damage Detector Using Deeper Fully Convolutional Data Descriptions for Civil Application","authors":"Takato Yasuno, M. Okano, Junichiro Fujii","doi":"10.54364/aaiml.2023.1159","DOIUrl":"https://doi.org/10.54364/aaiml.2023.1159","url":null,"abstract":"Infrastructure managers must maintain high standards to ensure user satisfaction during the lifecycle of infrastructures. Surveillance cameras and visual inspections have enabled progress in automating the detection of anomalous features and assessing the occurrence of deterioration. However, collecting damage data is typically time consuming and requires repeated inspections. The one-class damage detection approach has an advantage in that normal images can be used to optimize model parameters. Additionally, visual evaluation of heatmaps enables us to understand localized anomalous features. The authors highlight damage vision applications utilized in the robust property and localized damage explainability. First, we propose a civil-purpose application for automating one-class damage detection reproducing a Fully Convolutional Data Description (FCDD) as a baseline model. We have obtained accurate and explainable results demonstrating experimental studies on concrete damage and steel corrosion in civil engineering. Additionally, to develop a more robust application, we applied our method to another outdoor domain that contains complex and noisy backgrounds using natural disaster datasets collected using various devices. Furthermore, we propose a valuable solution of deeper FCDDs focusing on other powerful backbones to improve the performance of damage detection and implement ablation studies on disaster datasets. The key results indicate that the deeper FCDDs outperformed the baseline FCDD on datasets representing natural disaster damage caused by hurricanes, typhoons, earthquakes, and fourevent disasters.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133334335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolutionary Augmentation Policy Optimization for Self-supervised Learning","authors":"Noah Barrett, Zahra Sadeghi, S. Matwin","doi":"10.48550/arXiv.2303.01584","DOIUrl":"https://doi.org/10.48550/arXiv.2303.01584","url":null,"abstract":"Self-supervised Learning (SSL) is a machine learning algorithm for pretraining Deep Neural Networks (DNNs) without requiring manually labeled data. The central idea of this learning technique is based on an auxiliary stage aka pretext task in which labeled data are created automatically through data augmentation and exploited for pretraining the DNN. However, the effect of each pretext task is not well studied or compared in the literature. In this paper, we study the contribution of augmentation operators on the performance of self supervised learning algorithms in a constrained settings. We propose an evolutionary search method for optimization of data augmentation pipeline in pretext tasks and measure the impact of augmentation operators in several SOTA SSL algorithms. By encoding different combination of augmentation operators in chromosomes we seek the optimal augmentation policies through an evolutionary optimization mechanism. We further introduce methods for analyzing and explaining the performance of optimized SSL algorithms. Our results indicate that our proposed method can find solutions that outperform the accuracy of classification of SSL algorithms which confirms the influence of augmentation policy choice on the overall performance of SSL algorithms. We also compare optimal SSL solutions found by our evolutionary search mechanism and show the effect of batch size in the pretext task on two visual datasets.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115877815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EuclidNet: Deep Visual Reasoning for Constructible Problems in Geometry","authors":"M. Wong, Xintong Qi, C. Tan","doi":"10.54364/aaiml.2023.1152","DOIUrl":"https://doi.org/10.54364/aaiml.2023.1152","url":null,"abstract":"In this paper, we present a visual reasoning framework driven by deep learning for solving constructible problems in geometry that is useful for automated geometry theorem proving. Constructible problems in geometry often ask for the sequence of straightedge-and-compass constructions to construct a given goal given some initial setup. Our EuclidNet framework leverages the neural network architecture Mask R-CNN to extract the visual features from the initial setup and goal configuration with extra points of intersection, and then generate possible construction steps as intermediary data models that are used as feedback in the training process for further refinement of the construction step sequence. This process is repeated recursively until either a solution is found, in which case we backtrack the path for a step-by-step construction guide, or the problem is identified as unsolvable. Our EuclidNet framework is validated on the problem set of Euclidea with an average of 75% accuracy without prior knowledge and complex Japanese Sangaku geometry problems, demonstrating its capacity to leverage backtracking for deep visual reasoning of challenging problems.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123296624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting Survival of Tongue Cancer Patients by Machine Learning Models","authors":"Angelos Vasilopoulos, N. Xi","doi":"10.48550/arXiv.2212.12114","DOIUrl":"https://doi.org/10.48550/arXiv.2212.12114","url":null,"abstract":"Tongue cancer is a common oral cavity malignancy that originates in the mouth and throat. Much effort has been invested in improving its diagnosis, treatment, and management. Surgical removal, chemotherapy, and radiation therapy remain the major treatment for tongue cancer. The treatment effect is determined by patients’ survival status. Previous studies have identified certain survival and risk factors based on descriptive statistics, ignoring the complex, nonlinear relationship among clinical and demographic variables. In this study, we utilize five cutting-edge machine learning models and clinical data to predict the survival of tongue cancer patients after treatment. Five-fold cross-validation, bootstrap analysis, and permutation feature importance are applied to estimate and interpret model performance. The prognostic factors identified by our method are consistent with previous clinical studies. Our method is accurate, interpretable, and thus useable as additional evidence in tongue cancer treatment and management.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122356811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Levitas, Konstantin Yavilberg, O. Korol, Genadi Man
{"title":"Prediction of Auto Insurance Risk Based on t-SNE Dimensionality Reduction","authors":"J. Levitas, Konstantin Yavilberg, O. Korol, Genadi Man","doi":"10.54364/AAIML.2022.1139","DOIUrl":"https://doi.org/10.54364/AAIML.2022.1139","url":null,"abstract":"Correct risk estimation of policyholders is of great significance to auto insurance companies. While the current tools used in this field have been proven in practice to be quite efficient and beneficial, we argue that there is still a lot of room for development and improvement in the auto insurance risk estimation process. To this end, we develop a framework based on a combination of a neural network together with a dimensionality reduction technique t-SNE (t-distributed stochastic neighbour embedding). This enables us to visually represent the complex structure of the risk as a two-dimensional surface, while still preserving the properties of the local region in the features space. The obtained results, which are based on real insurance data, reveal a clear contrast between the high and the low risk policy holders, and indeed improve upon the actual risk estimation performed by the insurer. Due to the visual accessibility of the portfolio in this approach, we argue that this framework could be advantageous to the auto insurer, both as a main risk prediction tool and as an additional validation stage in other approaches.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133458786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can a face tell us anything about an NBA prospect? - A Deep Learning approach","authors":"A. Gavros, Foteini Gavrou","doi":"10.48550/arXiv.2212.06804","DOIUrl":"https://doi.org/10.48550/arXiv.2212.06804","url":null,"abstract":"Statistical analysis and modeling is becoming increasingly popular in professional sports organizations. Sophisticated methods and models of sports talent evaluation have been created for this purpose. In this research, we present a different perspective from the dominant tactic of statistical data analysis. We deploy Convolutional Neural Networks in an attempt to predict the career trajectory of newly drafted players from each draft class. We created a database consisting of about 1500 image data from players in every draft class since 1990. We then divided the players into five different quality classes based on their NBA career. Next, we trained popular image classification models in our data and conducted a series of tests in an attempt to create models that will provide reliable predictions of the rookie players’ careers. The results of this study suggest that there is a potential correlation between facial characteristics and athletic talent, worth of further investigation.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122425620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}