一张脸能告诉我们NBA的前景吗?-深度学习方法

A. Gavros, Foteini Gavrou
{"title":"一张脸能告诉我们NBA的前景吗?-深度学习方法","authors":"A. Gavros, Foteini Gavrou","doi":"10.48550/arXiv.2212.06804","DOIUrl":null,"url":null,"abstract":"Statistical analysis and modeling is becoming increasingly popular in professional sports organizations. Sophisticated methods and models of sports talent evaluation have been created for this purpose. In this research, we present a different perspective from the dominant tactic of statistical data analysis. We deploy Convolutional Neural Networks in an attempt to predict the career trajectory of newly drafted players from each draft class. We created a database consisting of about 1500 image data from players in every draft class since 1990. We then divided the players into five different quality classes based on their NBA career. Next, we trained popular image classification models in our data and conducted a series of tests in an attempt to create models that will provide reliable predictions of the rookie players’ careers. The results of this study suggest that there is a potential correlation between facial characteristics and athletic talent, worth of further investigation.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can a face tell us anything about an NBA prospect? - A Deep Learning approach\",\"authors\":\"A. Gavros, Foteini Gavrou\",\"doi\":\"10.48550/arXiv.2212.06804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical analysis and modeling is becoming increasingly popular in professional sports organizations. Sophisticated methods and models of sports talent evaluation have been created for this purpose. In this research, we present a different perspective from the dominant tactic of statistical data analysis. We deploy Convolutional Neural Networks in an attempt to predict the career trajectory of newly drafted players from each draft class. We created a database consisting of about 1500 image data from players in every draft class since 1990. We then divided the players into five different quality classes based on their NBA career. Next, we trained popular image classification models in our data and conducted a series of tests in an attempt to create models that will provide reliable predictions of the rookie players’ careers. The results of this study suggest that there is a potential correlation between facial characteristics and athletic talent, worth of further investigation.\",\"PeriodicalId\":373878,\"journal\":{\"name\":\"Adv. Artif. Intell. Mach. Learn.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.06804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.06804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计分析和建模在专业体育组织中越来越流行。为此,建立了完善的体育人才评价方法和模型。在这项研究中,我们提出了一个不同于统计数据分析的主导策略的观点。我们使用卷积神经网络来预测每个选秀级别新入选球员的职业轨迹。我们创建了一个数据库,包含了自1990年以来每个选秀级别的1500名球员的图像数据。然后,我们根据球员的NBA生涯将他们分为五个不同的素质等级。接下来,我们在数据中训练了流行的图像分类模型,并进行了一系列测试,试图创建能够提供新秀球员职业生涯可靠预测的模型。这项研究的结果表明,面部特征与运动天赋之间存在潜在的相关性,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can a face tell us anything about an NBA prospect? - A Deep Learning approach
Statistical analysis and modeling is becoming increasingly popular in professional sports organizations. Sophisticated methods and models of sports talent evaluation have been created for this purpose. In this research, we present a different perspective from the dominant tactic of statistical data analysis. We deploy Convolutional Neural Networks in an attempt to predict the career trajectory of newly drafted players from each draft class. We created a database consisting of about 1500 image data from players in every draft class since 1990. We then divided the players into five different quality classes based on their NBA career. Next, we trained popular image classification models in our data and conducted a series of tests in an attempt to create models that will provide reliable predictions of the rookie players’ careers. The results of this study suggest that there is a potential correlation between facial characteristics and athletic talent, worth of further investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信