Applied Computing and Informatics最新文献

筛选
英文 中文
Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis 基于机器学习的皮层下神经成像在帕金森病诊断中的性别差异
IF 12.3
Applied Computing and Informatics Pub Date : 2024-07-25 DOI: 10.1108/aci-02-2024-0080
N. Islam, Ruqaiya Khanam
{"title":"Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis","authors":"N. Islam, Ruqaiya Khanam","doi":"10.1108/aci-02-2024-0080","DOIUrl":"https://doi.org/10.1108/aci-02-2024-0080","url":null,"abstract":"PurposeThis study evaluates machine learning (ML) classifiers for diagnosing Parkinson’s disease (PD) using subcortical brain region data from 3D T1 magnetic resonance imaging (MRI) Parkinson’s Progression Markers Initiative (PPMI database). We aim to identify top-performing algorithms and assess gender-related differences in accuracy.Design/methodology/approachMultiple ML algorithms will be compared for their ability to classify PD vs healthy controls using MRI scans of the brain structures like the putamen, thalamus, brainstem, accumbens, amygdala, caudate, hippocampus and pallidum. Analysis will include gender-specific performance comparisons.FindingsThe study reveals that ML classifier performance in diagnosing PD varies across subcortical brain regions and shows gender differences. The Extra Trees classifier performed best in men (86.36% accuracy in the putamen), while Naive Bayes performed best in women (69.23%, amygdala). Regions like the accumbens, hippocampus and caudate showed moderate accuracy (65–70%) in men and poor performance in women. The results point out a significant gender-based performance gap, highlighting the need for gender-specific models to improve diagnostic precision across complex brain structures.Originality/valueThis study highlights the significant impact of gender on machine learning diagnosis of PD using data from subcortical brain regions. Our novel focus on these regions uncovers their diagnostic potential, improves model accuracy and emphasizes the need for gender-specific approaches in medical AI. This work could ultimately lead to earlier PD detection and more personalized treatment.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ChatGPT-powered deep learning: elevating brain tumor detection in MRI scans 由 ChatGPT 驱动的深度学习:提升核磁共振成像扫描中的脑肿瘤检测能力
IF 12.3
Applied Computing and Informatics Pub Date : 2024-07-03 DOI: 10.1108/aci-12-2023-0167
Soha Rawas, Cerine Tafran, D. Alsaeed
{"title":"ChatGPT-powered deep learning: elevating brain tumor detection in MRI scans","authors":"Soha Rawas, Cerine Tafran, D. Alsaeed","doi":"10.1108/aci-12-2023-0167","DOIUrl":"https://doi.org/10.1108/aci-12-2023-0167","url":null,"abstract":"PurposeAccurate diagnosis of brain tumors is crucial for effective treatment and improved patient outcomes. Magnetic resonance imaging (MRI) is a common method for detecting brain malignancies, but interpreting MRI data can be challenging and time-consuming for healthcare professionals.Design/methodology/approachAn innovative method is presented that combines deep learning (DL) models with natural language processing (NLP) from ChatGPT to enhance the accuracy of brain tumor detection in MRI scans. The method generates textual descriptions of brain tumor regions, providing clinicians with valuable insights into tumor characteristics for informed decision-making and personalized treatment planning.FindingsThe evaluation of this approach demonstrates promising outcomes, achieving a notable Dice coefficient score of 0.93 for tumor segmentation, outperforming current state-of-the-art methods. Human validation of the generated descriptions confirms their precision and conciseness.Research limitations/implicationsWhile the method showcased advancements in accuracy and understandability, ongoing research is essential for refining the model and addressing limitations in segmenting smaller or atypical tumors.Originality/valueThese results emphasized the potential of this innovative method in advancing neuroimaging practices and contributing to the effective detection and management of brain tumors.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":12.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141681292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-directional adaptive enhanced A* algorithm for mobile robot navigation 用于移动机器人导航的双向自适应增强型 A* 算法
Applied Computing and Informatics Pub Date : 2024-05-07 DOI: 10.1108/aci-12-2023-0195
Atef Gharbi
{"title":"Bi-directional adaptive enhanced A* algorithm for mobile robot navigation","authors":"Atef Gharbi","doi":"10.1108/aci-12-2023-0195","DOIUrl":"https://doi.org/10.1108/aci-12-2023-0195","url":null,"abstract":"PurposeThe present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.Design/methodology/approachThe paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.FindingsThe paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.Research limitations/implicationsThe rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.Originality/valueThe originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional s","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interca: an R library implementing “automatic” interpretation of results of multiple correspondence analysis (MCA) Interca:"自动 "解释多重对应分析(MCA)结果的 R 库
Applied Computing and Informatics Pub Date : 2024-04-01 DOI: 10.1108/aci-09-2023-0028
Stratos Moschidis, Angelos I. Markos, Dimosthenis Ioannidis
{"title":"Interca: an R library implementing “automatic” interpretation of results of multiple correspondence analysis (MCA)","authors":"Stratos Moschidis, Angelos I. Markos, Dimosthenis Ioannidis","doi":"10.1108/aci-09-2023-0028","DOIUrl":"https://doi.org/10.1108/aci-09-2023-0028","url":null,"abstract":"PurposeThe purpose of this paper is to develop a software-library in the R programming language that implements the concepts of the interpretive coordinate, interpretive axis and interpretive plane. This allows for the automatic and reliable interpretation of results from the multiple correspondence analysis (MCA) as previously proposed and published. Consequently, the users can seamlessly apply these concepts to their data, both via R commands and a corresponding graphical interface.Design/methodology/approachWithin the context of this study, and through extensive literature review, the advantages of developing software using the Shiny library were examined. This library allows for the development of full-stack applications for R users without the need for knowledge of the corresponding technologies required for the development of complex applications. Additionally, the structural components of a Shiny application were presented, leading ultimately to the proposed software application.FindingsSoftware utilizing the Shiny library enables nonexpert developers to rapidly develop specialized applications, either to present or to assist in the understanding of objects or concepts that are scientifically intriguing and complex. Specifically, with this proposed application, the users can promptly and effectively apply the scientific concepts addressed in this study to their data. Additionally, they can dynamically generate charts and reports that are readily available for download and sharing.Research limitations/implicationsThe proposed package is an implementation of the fundamental concepts of the exploratory MCA method. In the next step, discoveries from the geometric data analysis will be added as features to provide more comprehensive information to the users.Practical implicationsThe practical implications of this work include the dissemination of the method’s use to a broader audience. Additionally, the decision to implement it with open-source code will result in the integration of the package’s functions by other third-party user packages.Originality/valueThe proposed software introduces the initial implementation of concepts such as interpretive coordination, the interpretive axis and the interpretive plane. This package aims to broaden and simplify the application of these concepts to benefit stakeholders in scientific research. The software can be accessed for free in a code repository, the link to which is provided in the full text of the study.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140357500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wine quality assessment through lightweight deep learning: integrating 1D-CNN and LSTM for analyzing electronic nose VOCs signals 通过轻量级深度学习进行葡萄酒质量评估:整合 1D-CNN 和 LSTM 以分析电子鼻 VOC 信号
Applied Computing and Informatics Pub Date : 2024-03-01 DOI: 10.1108/aci-10-2023-0098
Quoc Duy Nam Nguyen, Hoang Viet Anh Le, Tadashi Nakano, Thi Hong Tran
{"title":"Wine quality assessment through lightweight deep learning: integrating 1D-CNN and LSTM for analyzing electronic nose VOCs signals","authors":"Quoc Duy Nam Nguyen, Hoang Viet Anh Le, Tadashi Nakano, Thi Hong Tran","doi":"10.1108/aci-10-2023-0098","DOIUrl":"https://doi.org/10.1108/aci-10-2023-0098","url":null,"abstract":"PurposeIn the wine industry, maintaining superior quality standards is crucial to meet the expectations of both producers and consumers. Traditional approaches to assessing wine quality involve labor-intensive processes and rely on the expertise of connoisseurs proficient in identifying taste profiles and key quality factors. In this research, we introduce an innovative and efficient approach centered on the analysis of volatile organic compounds (VOCs) signals using an electronic nose, thereby empowering nonexperts to accurately assess wine quality.Design/methodology/approachTo devise an optimal algorithm for this purpose, we conducted four computational experiments, culminating in the development of a specialized deep learning network. This network seamlessly integrates 1D-convolutional and long-short-term memory layers, tailor-made for the intricate task at hand. Rigorous validation ensued, employing a leave-one-out cross-validation methodology to scrutinize the efficacy of our design.FindingsThe outcomes of these e-demonstrates were subjected to meticulous evaluation and analysis, which unequivocally demonstrate that our proposed architecture consistently attains promising recognition accuracies, ranging impressively from 87.8% to an astonishing 99.41%. All this is achieved within a remarkably brief timeframe of a mere 4 seconds. These compelling findings have far-reaching implications, promising to revolutionize the assessment and tracking of wine quality, ultimately affording substantial benefits to the wine industry and all its stakeholders, with a particular focus on the critical aspect of VOCs signal analysis.Originality/valueThis research has not been published anywhere else.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140089347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dynamic reward-enhanced Q-learning approach for efficient path planning and obstacle avoidance in mobile robotics 用于移动机器人高效路径规划和避障的动态奖励增强 Q 学习方法
Applied Computing and Informatics Pub Date : 2024-01-25 DOI: 10.1108/aci-10-2023-0089
Atef Gharbi
{"title":"A dynamic reward-enhanced Q-learning approach for efficient path planning and obstacle avoidance in mobile robotics","authors":"Atef Gharbi","doi":"10.1108/aci-10-2023-0089","DOIUrl":"https://doi.org/10.1108/aci-10-2023-0089","url":null,"abstract":"PurposeThe purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific objectives and purposes outlined in the paper include: introducing a new methodology that combines Q-learning with dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the convergence to optimal solutions and demonstrating through simulation results that the proposed method, dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving convergence to an optimal action strategy more efficiently, requiring less time and improving path exploration with fewer steps and higher average rewards.Design/methodology/approachThe design adopted in this paper to achieve its purposes involves the following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function, while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning process. These mechanisms provide feedback to the robot based on its actions, guiding it to make decisions that lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance metrics: the design incorporates performance metrics to measure the success of the approach. These metrics likely include measures of convergence speed, exploration efficiency, the number of steps taken and the average rewards obtained during the robot’s navigation.FindingsThe findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle avoidance: the paper’s proposed approach, DRQL, leads to more efficient path planning and obstacle avoidance for MR. This is achieved through the combination of Q-learning and dynamic reward mechanisms, which guide the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence of the MR to optimal action strategies. Dynamic ","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139598227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain tumor classification using ResNet50-convolutional block attention module 使用 ResNet50 卷积块注意力模块进行脑肿瘤分类
Applied Computing and Informatics Pub Date : 2023-12-21 DOI: 10.1108/aci-09-2023-0022
Oladosu Oyebisi Oladimeji, A. Ibitoye
{"title":"Brain tumor classification using ResNet50-convolutional block attention module","authors":"Oladosu Oyebisi Oladimeji, A. Ibitoye","doi":"10.1108/aci-09-2023-0022","DOIUrl":"https://doi.org/10.1108/aci-09-2023-0022","url":null,"abstract":"PurposeDiagnosing brain tumors is a process that demands a significant amount of time and is heavily dependent on the proficiency and accumulated knowledge of radiologists. Over the traditional methods, deep learning approaches have gained popularity in automating the diagnosis of brain tumors, offering the potential for more accurate and efficient results. Notably, attention-based models have emerged as an advanced, dynamically refining and amplifying model feature to further elevate diagnostic capabilities. However, the specific impact of using channel, spatial or combined attention methods of the convolutional block attention module (CBAM) for brain tumor classification has not been fully investigated.Design/methodology/approachTo selectively emphasize relevant features while suppressing noise, ResNet50 coupled with the CBAM (ResNet50-CBAM) was used for the classification of brain tumors in this research.FindingsThe ResNet50-CBAM outperformed existing deep learning classification methods like convolutional neural network (CNN), ResNet-CBAM achieved a superior performance of 99.43%, 99.01%, 98.7% and 99.25% in accuracy, recall, precision and AUC, respectively, when compared to the existing classification methods using the same dataset.Practical implicationsSince ResNet-CBAM fusion can capture the spatial context while enhancing feature representation, it can be integrated into the brain classification software platforms for physicians toward enhanced clinical decision-making and improved brain tumor classification.Originality/valueThis research has not been published anywhere else.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138949796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic measurement of cardiothoracic ratio in chest x-ray images with ProGAN-generated dataset 使用ProGAN生成的数据集自动测量胸部x射线图像中的心胸比率
Applied Computing and Informatics Pub Date : 2023-04-18 DOI: 10.1108/aci-11-2022-0322
Worapan Kusakunniran, P. Saiviroonporn, T. Siriapisith, T. Tongdee, Amphai Uraiverotchanakorn, Suphawan Leesakul, Penpitcha Thongnarintr, Apichaya Kuama, Pakorn Yodprom
{"title":"Automatic measurement of cardiothoracic ratio in chest x-ray images with ProGAN-generated dataset","authors":"Worapan Kusakunniran, P. Saiviroonporn, T. Siriapisith, T. Tongdee, Amphai Uraiverotchanakorn, Suphawan Leesakul, Penpitcha Thongnarintr, Apichaya Kuama, Pakorn Yodprom","doi":"10.1108/aci-11-2022-0322","DOIUrl":"https://doi.org/10.1108/aci-11-2022-0322","url":null,"abstract":"PurposeThe cardiomegaly can be determined by the cardiothoracic ratio (CTR) which can be measured in a chest x-ray image. It is calculated based on a relationship between a size of heart and a transverse dimension of chest. The cardiomegaly is identified when the ratio is larger than a cut-off threshold. This paper aims to propose a solution to calculate the ratio for classifying the cardiomegaly in chest x-ray images.Design/methodology/approachThe proposed method begins with constructing lung and heart segmentation models based on U-Net architecture using the publicly available datasets with the groundtruth of heart and lung masks. The ratio is then calculated using the sizes of segmented lung and heart areas. In addition, Progressive Growing of GANs (PGAN) is adopted here for constructing the new dataset containing chest x-ray images of three classes including male normal, female normal and cardiomegaly classes. This dataset is then used for evaluating the proposed solution. Also, the proposed solution is used to evaluate the quality of chest x-ray images generated from PGAN.FindingsIn the experiments, the trained models are applied to segment regions of heart and lung in chest x-ray images on the self-collected dataset. The calculated CTR values are compared with the values that are manually measured by human experts. The average error is 3.08%. Then, the models are also applied to segment regions of heart and lung for the CTR calculation, on the dataset computed by PGAN. Then, the cardiomegaly is determined using various attempts of different cut-off threshold values. With the standard cut-off at 0.50, the proposed method achieves 94.61% accuracy, 88.31% sensitivity and 94.20% specificity.Originality/valueThe proposed solution is demonstrated to be robust across unseen datasets for the segmentation, CTR calculation and cardiomegaly classification, including the dataset generated from PGAN. The cut-off value can be adjusted to be lower than 0.50 for increasing the sensitivity. For example, the sensitivity of 97.04% can be achieved at the cut-off of 0.45. However, the specificity is decreased from 94.20% to 79.78%.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49561142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyber threat: its origins and consequence and the use of qualitative and quantitative methods in cyber risk assessment 网络威胁:其起源和后果以及在网络风险评估中定性和定量方法的使用
Applied Computing and Informatics Pub Date : 2022-12-26 DOI: 10.1108/aci-07-2022-0178
James R. Crotty, E. Daniel
{"title":"Cyber threat: its origins and consequence and the use of qualitative and quantitative methods in cyber risk assessment","authors":"James R. Crotty, E. Daniel","doi":"10.1108/aci-07-2022-0178","DOIUrl":"https://doi.org/10.1108/aci-07-2022-0178","url":null,"abstract":"PurposeConsumers increasingly rely on organisations for online services and data storage while these same institutions seek to digitise the information assets they hold to create economic value. Cybersecurity failures arising from malicious or accidental actions can lead to significant reputational and financial loss which organisations must guard against. Despite having some critical weaknesses, qualitative cybersecurity risk analysis is widely used in developing cybersecurity plans. This research explores these weaknesses, considers how quantitative methods might address the constraints and seeks the insights and recommendations of leading cybersecurity practitioners on the use of qualitative and quantitative cyber risk assessment methods.Design/methodology/approachThe study is based upon a literature review and thematic analysis of in-depth qualitative interviews with 16 senior cybersecurity practitioners representing financial services and advisory companies from across the world.FindingsWhile most organisations continue to rely on qualitative methods for cybersecurity risk assessment, some are also actively using quantitative approaches to enhance their cybersecurity planning efforts. The primary recommendation of this paper is that organisations should adopt both a qualitative and quantitative cyber risk assessment approach.Originality/valueThis work provides the first insight into how senior practitioners are using and combining qualitative and quantitative cybersecurity risk assessment, and highlights the need for in-depth comparisons of these two different approaches.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44565165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Detecting and staging diabetic retinopathy in retinal images using multi-branch CNN 多分支CNN在视网膜图像中检测和分期糖尿病视网膜病变
Applied Computing and Informatics Pub Date : 2022-12-06 DOI: 10.1108/aci-06-2022-0150
Worapan Kusakunniran, Sarattha Karnjanapreechakorn, Pitipol Choopong, T. Siriapisith, N. Tesavibul, N. Phasukkijwatana, S. Prakhunhungsit, Sutasinee Boonsopon
{"title":"Detecting and staging diabetic retinopathy in retinal images using multi-branch CNN","authors":"Worapan Kusakunniran, Sarattha Karnjanapreechakorn, Pitipol Choopong, T. Siriapisith, N. Tesavibul, N. Phasukkijwatana, S. Prakhunhungsit, Sutasinee Boonsopon","doi":"10.1108/aci-06-2022-0150","DOIUrl":"https://doi.org/10.1108/aci-06-2022-0150","url":null,"abstract":"PurposeThis paper aims to propose a solution for detecting and grading diabetic retinopathy (DR) in retinal images using a convolutional neural network (CNN)-based approach. It could classify input retinal images into a normal class or an abnormal class, which would be further split into four stages of abnormalities automatically.Design/methodology/approachThe proposed solution is developed based on a newly proposed CNN architecture, namely, DeepRoot. It consists of one main branch, which is connected by two side branches. The main branch is responsible for the primary feature extractor of both high-level and low-level features of retinal images. Then, the side branches further extract more complex and detailed features from the features outputted from the main branch. They are designed to capture details of small traces of DR in retinal images, using modified zoom-in/zoom-out and attention layers.FindingsThe proposed method is trained, validated and tested on the Kaggle dataset. The regularization of the trained model is evaluated using unseen data samples, which were self-collected from a real scenario from a hospital. It achieves a promising performance with a sensitivity of 98.18% under the two classes scenario.Originality/valueThe new CNN-based architecture (i.e. DeepRoot) is introduced with the concept of a multi-branch network. It could assist in solving a problem of an unbalanced dataset, especially when there are common characteristics across different classes (i.e. four stages of DR). Different classes could be outputted at different depths of the network.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49366416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信