“Automatic” interpretation of multiple correspondence analysis (MCA) results for nonexpert users, using R programming

IF 12.3 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Stratos Moschidis, Angelos Markos, Athanasios C. Thanopoulos
{"title":"“Automatic” interpretation of multiple correspondence analysis (MCA) results for nonexpert users, using R programming","authors":"Stratos Moschidis, Angelos Markos, Athanasios C. Thanopoulos","doi":"10.1108/aci-07-2022-0191","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to create an automatic interpretation of the results of the method of multiple correspondence analysis (MCA) for categorical variables, so that the nonexpert user can immediately and safely interpret the results, which concern, as the authors know, the categories of variables that strongly interact and determine the trends of the subject under investigation.Design/methodology/approachThis study is a novel theoretical approach to interpreting the results of the MCA method. The classical interpretation of MCA results is based on three indicators: the projection (F) of the category points of the variables in factorial axes, the point contribution to axis creation (CTR) and the correlation (COR) of a point with an axis. The synthetic use of the aforementioned indicators is arduous, particularly for nonexpert users, and frequently results in misinterpretations. The current study has achieved a synthesis of the aforementioned indicators, so that the interpretation of the results is based on a new indicator, as correspondingly on an index, the well-known method principal component analysis (PCA) for continuous variables is based.FindingsTwo (2) concepts were proposed in the new theoretical approach. The interpretative axis corresponding to the classical factorial axis and the interpretative plane corresponding to the factorial plane that as it will be seen offer clear and safe interpretative results in MCA.Research limitations/implicationsIt is obvious that in the development of the proposed automatic interpretation of the MCA results, the authors do not have in the interpretative axes the actual projections of the points as is the case in the original factorial axes, but this is not of interest to the simple user who is only interested in being able to distinguish the categories of variables that determine the interpretation of the most pronounced trends of the phenomenon being examined.Practical implicationsThe results of this research can have positive implications for the dissemination of MCA as a method and its use as an integrated exploratory data analysis approach.Originality/valueInterpreting the MCA results presents difficulties for the nonexpert user and sometimes lead to misinterpretations. The interpretative difficulty persists in the MCA's other interpretative proposals. The proposed method of interpreting the MCA results clearly and accurately allows for the interpretation of its results and thus contributes to the dissemination of the MCA as an integrated method of categorical data analysis and exploration.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aci-07-2022-0191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

PurposeThe purpose of this paper is to create an automatic interpretation of the results of the method of multiple correspondence analysis (MCA) for categorical variables, so that the nonexpert user can immediately and safely interpret the results, which concern, as the authors know, the categories of variables that strongly interact and determine the trends of the subject under investigation.Design/methodology/approachThis study is a novel theoretical approach to interpreting the results of the MCA method. The classical interpretation of MCA results is based on three indicators: the projection (F) of the category points of the variables in factorial axes, the point contribution to axis creation (CTR) and the correlation (COR) of a point with an axis. The synthetic use of the aforementioned indicators is arduous, particularly for nonexpert users, and frequently results in misinterpretations. The current study has achieved a synthesis of the aforementioned indicators, so that the interpretation of the results is based on a new indicator, as correspondingly on an index, the well-known method principal component analysis (PCA) for continuous variables is based.FindingsTwo (2) concepts were proposed in the new theoretical approach. The interpretative axis corresponding to the classical factorial axis and the interpretative plane corresponding to the factorial plane that as it will be seen offer clear and safe interpretative results in MCA.Research limitations/implicationsIt is obvious that in the development of the proposed automatic interpretation of the MCA results, the authors do not have in the interpretative axes the actual projections of the points as is the case in the original factorial axes, but this is not of interest to the simple user who is only interested in being able to distinguish the categories of variables that determine the interpretation of the most pronounced trends of the phenomenon being examined.Practical implicationsThe results of this research can have positive implications for the dissemination of MCA as a method and its use as an integrated exploratory data analysis approach.Originality/valueInterpreting the MCA results presents difficulties for the nonexpert user and sometimes lead to misinterpretations. The interpretative difficulty persists in the MCA's other interpretative proposals. The proposed method of interpreting the MCA results clearly and accurately allows for the interpretation of its results and thus contributes to the dissemination of the MCA as an integrated method of categorical data analysis and exploration.
使用R编程为非专业用户“自动”解释多个对应分析(MCA)结果
目的本文的目的是对分类变量的多重对应分析(MCA)方法的结果进行自动解释,以便非专业用户能够立即、安全地解释结果,正如作者所知,这些结果涉及强烈相互作用并决定被调查对象趋势的变量类别。设计/方法论/方法本研究是一种解释MCA方法结果的新颖理论方法。MCA结果的经典解释基于三个指标:因子轴中变量类别点的投影(F)、点对轴创建的贡献(CTR)以及点与轴的相关性(COR)。综合使用上述指标是困难的,特别是对非专业用户来说,而且经常导致误解。目前的研究已经实现了对上述指标的综合,因此对结果的解释是基于一个新的指标,相应地,基于一个指数,连续变量的著名方法主成分分析(PCA)就是基于此。发现在新的理论方法中提出了两个概念。与经典析因轴对应的解释轴和与析因平面对应的解释平面将在MCA中提供清晰和安全的解释结果。研究局限性/含义很明显,在所提出的MCA结果的自动解释的发展中,作者在解释轴中没有像在原始因子轴中那样的点的实际投影,但这对只对能够区分变量类别感兴趣的简单用户来说是不感兴趣的,这些变量类别决定了对所研究现象最显著趋势的解释。实际意义这项研究的结果可以对MCA作为一种方法的传播及其作为一种综合探索性数据分析方法的使用产生积极意义。原创性/价值解释MCA结果给非专业用户带来了困难,有时还会导致误解。MCA的其他解释性建议仍然存在解释上的困难。所提出的清晰准确地解释MCA结果的方法允许对其结果进行解释,从而有助于MCA作为分类数据分析和探索的综合方法的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Informatics
Applied Computing and Informatics Computer Science-Information Systems
CiteScore
12.20
自引率
0.00%
发文量
0
审稿时长
39 weeks
期刊介绍: Applied Computing and Informatics aims to be timely in disseminating leading-edge knowledge to researchers, practitioners and academics whose interest is in the latest developments in applied computing and information systems concepts, strategies, practices, tools and technologies. In particular, the journal encourages research studies that have significant contributions to make to the continuous development and improvement of IT practices in the Kingdom of Saudi Arabia and other countries. By doing so, the journal attempts to bridge the gap between the academic and industrial community, and therefore, welcomes theoretically grounded, methodologically sound research studies that address various IT-related problems and innovations of an applied nature. The journal will serve as a forum for practitioners, researchers, managers and IT policy makers to share their knowledge and experience in the design, development, implementation, management and evaluation of various IT applications. Contributions may deal with, but are not limited to: • Internet and E-Commerce Architecture, Infrastructure, Models, Deployment Strategies and Methodologies. • E-Business and E-Government Adoption. • Mobile Commerce and their Applications. • Applied Telecommunication Networks. • Software Engineering Approaches, Methodologies, Techniques, and Tools. • Applied Data Mining and Warehousing. • Information Strategic Planning and Recourse Management. • Applied Wireless Computing. • Enterprise Resource Planning Systems. • IT Education. • Societal, Cultural, and Ethical Issues of IT. • Policy, Legal and Global Issues of IT. • Enterprise Database Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信