{"title":"Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame","authors":"Seonwoong Kim","doi":"10.5000/eesk.2020.24.5.233","DOIUrl":"https://doi.org/10.5000/eesk.2020.24.5.233","url":null,"abstract":"This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.","PeriodicalId":372168,"journal":{"name":"Journal of The Earthquake Engineering Society of Korea","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129330149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yeon-Jun Kim, Ko Kil-Wan, Manandharsatish, Kim Byungmin, Dong‐Soo Kim
{"title":"Overview on Standards for Liquefaction Triggering Evaluation using the Simplified Method","authors":"Yeon-Jun Kim, Ko Kil-Wan, Manandharsatish, Kim Byungmin, Dong‐Soo Kim","doi":"10.5000/eesk.2020.24.5.197","DOIUrl":"https://doi.org/10.5000/eesk.2020.24.5.197","url":null,"abstract":"Evidence of liquefaction during the 2017 Pohang earthquake has highlighted the urgent need to evaluate the current seismic design standard for liquefaction in Korea, particularly the liquefaction triggering standard. With the simplified method, which is the most popular method for evaluating liquefaction triggering, the factor of safety for liquefaction triggering is calculated via the cyclic stress ratio (CSR) and the cyclic resistance ratio (CRR). The parameters in the CSR and CRR have undergone changes over time based on new research findings and lessons learned from liquefaction case-histories. Hence, the current design standard for liquefaction triggering evaluation in Korea should also reflect these changes to achieve seismic safety during future earthquakes. In this study, liquefaction susceptibility criteria were discussed initially and this was followed by a review of the current liquefaction triggering codes/guidelines in other countries and Korea. Next, the parameters associated with the CSR such as the maximum ground acceleration, stress reduction factor, magnitude scaling factor, and overburden correction factor were discussed in detail. Then, the evaluation of the CRR using the SPT N-value and CPT qc-value was elaborated along with overburden and clean-sand correction factors. Based on this review of liquefaction triggering evaluation standards, recommendations are made for improving the current seismic design standard related to liquefaction triggering in Korea.","PeriodicalId":372168,"journal":{"name":"Journal of The Earthquake Engineering Society of Korea","volume":"2000 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128281274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (I- Analysis of Field Testing of Cable Supported Bridge)","authors":"H. Gil, Sun Kyu Park, Kyoungbong Han, W. S. Yoon","doi":"10.5000/eesk.2020.24.4.157","DOIUrl":"https://doi.org/10.5000/eesk.2020.24.4.157","url":null,"abstract":"In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the “Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges.” Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.","PeriodicalId":372168,"journal":{"name":"Journal of The Earthquake Engineering Society of Korea","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121183065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Testing of RC Corner Beam-column Joints under Bidirectional Loading","authors":"S. Han, Y. Chang, C. Lee","doi":"10.5000/eesk.2020.24.4.189","DOIUrl":"https://doi.org/10.5000/eesk.2020.24.4.189","url":null,"abstract":"In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uni-and bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.","PeriodicalId":372168,"journal":{"name":"Journal of The Earthquake Engineering Society of Korea","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131951220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (II-Proposal for the Seismic Design Procedure)","authors":"H. Gil, Sun Kyu Park, Kyoungbong Han, W. S. Yoon","doi":"10.5000/eesk.2020.24.4.169","DOIUrl":"https://doi.org/10.5000/eesk.2020.24.4.169","url":null,"abstract":"In a previous paper, ambient vibration tests were conducted on a cable stayed bridge with resilient-friction base isolation systems (R-FBI) to extract the dynamic characteristics of the bridge and compare the results with a seismic analysis model. In this paper, a nonlinear seismic analysis model was established for analysis of the bridge to compare the difference in seismic responses between nonlinear time history analysis and multi-mode spectral analysis methods in the seismic design phase of cable supported bridges. Through these studies, it was confirmed that the seismic design procedures of the “Korean Highway Bridge Design Code (Limit State Design) for Cable Supported Bridges” is not suitable for cable supported bridges installed with R-FBI. Therefore, to reflect the actual dynamic characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure is proposed that applies the seismic analysis method differently depending on the seismic isolation effect of the R-FBI for each seismic performance level.","PeriodicalId":372168,"journal":{"name":"Journal of The Earthquake Engineering Society of Korea","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126506949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation of Floor Response Spectra Considering Coupling Effect of\u0000Primary and Secondary System","authors":"S. Cho, Abhinav Gupta","doi":"10.5000/eesk.2020.24.4.179","DOIUrl":"https://doi.org/10.5000/eesk.2020.24.4.179","url":null,"abstract":"Seismic qualification of equipment including piping is performed by using floor response spectra (FRS) or in-structure response spectra (ISRS) as the earthquake input at the base of the equipment. The amplitude of the FRS may be noticeably reduced when obtained from coupling analysis because of interaction between the primary structure and the equipment. This paper introduces a method using a modal synthesis approach to generate the FRS in a coupled primary-secondary system that can avoid numerical instabilities or inaccuracies. The FRS were generated by considering the dynamic interaction that can occur at the interface between the supporting structure and the equipment. This study performed a numerical example analysis using a typical nuclear structure to investigate the coupling effect when generating the FRS. The study results show that the coupling analysis dominantly reduces the FRS and yields rational results. The modal synthesis approach is very practical to implement because it requires information on only a small number of dynamic characteristics of the primary and the secondary systems such as frequencies, modal participation factors, and mode shape ordinates at the locations where the FRS needs to be generated.","PeriodicalId":372168,"journal":{"name":"Journal of The Earthquake Engineering Society of Korea","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131609301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}