Journal of Molecular Biology最新文献

筛选
英文 中文
Computational Resources for Molecular Biology 2024 分子生物学计算资源 2024。
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168739
{"title":"Computational Resources for Molecular Biology 2024","authors":"","doi":"10.1016/j.jmb.2024.168739","DOIUrl":"10.1016/j.jmb.2024.168739","url":null,"abstract":"","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624003486/pdfft?md5=d20b521f352ab3c8e0df1b535e41b9bd&pid=1-s2.0-S0022283624003486-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVAR: A Mouse Variation Registry MVAR:小鼠变异登记册。
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168518
{"title":"MVAR: A Mouse Variation Registry","authors":"","doi":"10.1016/j.jmb.2024.168518","DOIUrl":"10.1016/j.jmb.2024.168518","url":null,"abstract":"<div><p>The Mouse Variation Registry (MVAR) resource is a scalable registry of mouse single nucleotide variants and small indels and variant annotation. The resource accepts data in standard Variant Call Format (VCF) and assesses the uniqueness of the submitted variants via a canonicalization process. Novel variants are assigned a unique, persistent MVAR identifier; variants that are equivalent to an existing variant in the resource are associated with the existing identifier. Annotations for variant type, molecular consequence, impact, and genomic region in the context of specific transcripts and protein sequences are generated using Ensembl’s Variant Effect Predictor (VEP) and Jannovar. Access to the data and annotations in MVAR are supported via an Application Programming Interface (API) and web application. Researchers can search the resource by gene symbol, genomic region, variant (expressed in Human Genome Variation Society syntax), refSNP identifiers, or MVAR identifiers. Tabular search results can be filtered by variant annotations (variant type, molecular consequence, impact, variant region) and viewed according to variant distribution across mouse strains. The registry currently comprises more than 99 million canonical single nucleotide variants for 581 strains of mice. MVAR is accessible from <span><span>https://mvar.jax.org</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001050/pdfft?md5=6a3249ee01b7788a6e26ba3e34d23bf6&pid=1-s2.0-S0022283624001050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140064505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EVPsort: An Atlas of Small ncRNA Profiling and Sorting in Extracellular Vesicles and Particles EVPsort:细胞外囊泡和颗粒中的小 ncRNA 图谱和分选图谱
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168571
{"title":"EVPsort: An Atlas of Small ncRNA Profiling and Sorting in Extracellular Vesicles and Particles","authors":"","doi":"10.1016/j.jmb.2024.168571","DOIUrl":"10.1016/j.jmb.2024.168571","url":null,"abstract":"<div><p>Extracellular vesicles and particles (EVPs) play a crucial role in mediating cell-to-cell communication by transporting various molecular cargos, with small non-coding RNAs (ncRNAs) holding particular significance. A thorough investigation into the abundance and sorting mechanisms of ncRNA within EVPs is imperative for advancing their clinical applications. We have developed EVPsort, which not only provides an extensive overview of ncRNA profiling in 3,162 samples across various biofluids, cell lines, and disease contexts but also seamlessly integrates 19 external databases and tools. This integration encompasses information on associations between ncRNAs and RNA-binding proteins (RBPs), motifs, targets, pathways, diseases, and drugs. With its rich resources and powerful analysis tools, EVPsort extends its profiling capabilities to investigate ncRNA sorting, identify relevant RBPs and motifs, and assess functional implications. EVPsort stands as a pioneering database dedicated to comprehensively addressing both the abundance and sorting of ncRNA within EVPs. It is freely accessible at <span><span>https://bioinfo.vanderbilt.edu/evpsort/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001669/pdfft?md5=d1e4fae061b08442f9953654a1bc6eaa&pid=1-s2.0-S0022283624001669-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening DockThor-VS:受体配体虚拟筛选的免费平台
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168548
{"title":"DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening","authors":"","doi":"10.1016/j.jmb.2024.168548","DOIUrl":"10.1016/j.jmb.2024.168548","url":null,"abstract":"<div><p>The DockThor-VS platform (<span><span>https://dockthor.lncc.br/v2/</span><svg><path></path></svg></span>) is a free protein–ligand docking server conceptualized to facilitate and assist drug discovery projects to perform docking-based virtual screening experiments accurately and using high-performance computing. The DockThor docking engine is a grid-based method designed for flexible-ligand and rigid-receptor docking. It employs a multiple-solution genetic algorithm and the MMFF94S molecular force field scoring function for pose prediction. This engine was engineered to handle highly flexible ligands, such as peptides. Affinity prediction and ranking of protein–ligand complexes are performed with the linear empirical scoring function DockTScore. The main steps of the ligand and protein preparation are available on the DockThor Portal, making it possible to change the protonation states of the amino acid residues, and include cofactors as rigid entities. The user can also customize and visualize the main parameters of the grid box. The results of docking experiments are automatically clustered and ordered, providing users with a diverse array of meaningful binding modes. The platform DockThor-VS offers a user-friendly interface and powerful algorithms, enabling researchers to conduct virtual screening experiments efficiently and accurately. The DockThor Portal utilizes the computational strength of the Brazilian high-performance platform SDumont, further amplifying the efficiency and speed of docking experiments. Additionally, the web server facilitates and enhances virtual screening experiments by offering curated structures of potential targets and compound datasets, such as proteins related to COVID-19 and FDA-approved drugs for repurposing studies. In summary, DockThor-VS is a dynamic and evolving solution for docking-based virtual screening to be applied in drug discovery projects.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001438/pdfft?md5=57349e8fba1907bce8b7894215619c89&pid=1-s2.0-S0022283624001438-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140282959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
@TOME 3.0: Interfacing Protein Structure Modeling and Ligand Docking @TOME 3.0:蛋白质结构建模与配体对接的接口
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168704
{"title":"@TOME 3.0: Interfacing Protein Structure Modeling and Ligand Docking","authors":"","doi":"10.1016/j.jmb.2024.168704","DOIUrl":"10.1016/j.jmb.2024.168704","url":null,"abstract":"<div><p>Knowledge of protein–ligand complexes is essential for efficient drug design. Virtual docking can bring important information on putative complexes but it is still far from being simultaneously fast and accurate. Receptors are flexible and adapt to the incoming small molecules while docking is highly sensitive to small conformational deviations. Conformation ensemble is providing a mean to simulate protein flexibility. However, modeling multiple protein structures for many targets is seldom connected to ligand screening in an efficient and straightforward manner.</p><p>@TOME-3 is an updated version of our former pipeline @TOME-2, in which protein structure modeling is now directly interfaced with flexible ligand docking. Sequence-sequence profile comparisons identify suitable PDB templates for structure modeling and ligands from these templates are used to deduce binding sites to be screened. In addition, bound ligand can be used as pharmacophoric restraint during the virtual docking. The latter is performed by PLANTS while the docking poses are analysed through multiple chemoinformatics functions. This unique combination of tools allows rapid and efficient ligand docking on multiple receptor conformations in parallel. @TOME-3 is freely available on the web at <span><span>https://atome.cbs.cnrs.fr</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624003139/pdfft?md5=88c6a60894400d42c3d2f8977cdcdff1&pid=1-s2.0-S0022283624003139-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141713094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LinearAlifold: Linear-time consensus structure prediction for RNA alignments LinearAlifold:RNA 对齐的线性时间共识结构预测
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168694
{"title":"LinearAlifold: Linear-time consensus structure prediction for RNA alignments","authors":"","doi":"10.1016/j.jmb.2024.168694","DOIUrl":"10.1016/j.jmb.2024.168694","url":null,"abstract":"<div><p>Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (<span><math><mrow><mo>∼</mo></mrow></math></span>30,000<em>nt</em>). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 h on the above 400 genomes, or <span><math><mrow><mo>∼</mo><mn>36</mn><mo>×</mo></mrow></math></span> speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold’s prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at:</p><p><span><span>https://github.com/LinearFold/LinearAlifold</span><svg><path></path></svg></span> (code) and <span><span>http://linearfold.org/linear-alifold</span><svg><path></path></svg></span> (server).</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624002961/pdfft?md5=00f1e9455bb03b8e6b3ad40c8ff311e7&pid=1-s2.0-S0022283624002961-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AHoJ-DB: A PDB-wide Assignment of apo & holo Relationships Based on Individual Protein–Ligand Interactions AHoJ-DB:基于单个蛋白质与配体的相互作用,在整个 PDB 范围内分配 apo 和 holo 关系。
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168545
{"title":"AHoJ-DB: A PDB-wide Assignment of apo & holo Relationships Based on Individual Protein–Ligand Interactions","authors":"","doi":"10.1016/j.jmb.2024.168545","DOIUrl":"10.1016/j.jmb.2024.168545","url":null,"abstract":"<div><p>A single protein structure is rarely sufficient to capture the conformational variability of a protein. Both bound and unbound (holo and apo) forms of a protein are essential for understanding its geometry and making meaningful comparisons. Nevertheless, docking or drug design studies often still consider only single protein structures in their holo form, which are for the most part rigid. With the recent explosion in the field of structural biology, large, curated datasets are urgently needed. Here, we use a previously developed application (AHoJ) to perform a comprehensive search for apo-holo pairs for 468,293 biologically relevant protein–ligand interactions across 27,983 proteins. In each search, the binding pocket is captured and mapped across existing structures within the same UniProt, and the mapped pockets are annotated as apo or holo, based on the presence or absence of ligands. We assemble the results into a database, AHoJ-DB (<span><span>www.apoholo.cz/db</span><svg><path></path></svg></span>), that captures the variability of proteins with identical sequences, thereby exposing the agents responsible for the observed differences in geometry. We report several metrics for each annotated pocket, and we also include binding pockets that form at the interface of multiple chains. Analysis of the database shows that about 24% of the binding sites occur at the interface of two or more chains and that less than 50% of the total binding sites processed have an apo form in the PDB. These results can be used to train and evaluate predictors, discover potentially druggable proteins, and reveal protein- and ligand-specific relationships that were previously obscured by intermittent or partial data.</p><p>Availability: <span><span>www.apoholo.cz/db</span><svg><path></path></svg></span></p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001402/pdfft?md5=f8fea6cdc88d1aafc3fe11d1d30c7887&pid=1-s2.0-S0022283624001402-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
XGRm: A Web Server for Interpreting Mouse Summary-level Genomic Data XGRm:解读小鼠摘要级基因组数据的网络服务器
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168705
{"title":"XGRm: A Web Server for Interpreting Mouse Summary-level Genomic Data","authors":"","doi":"10.1016/j.jmb.2024.168705","DOIUrl":"10.1016/j.jmb.2024.168705","url":null,"abstract":"<div><p>We introduce XGR-model (or XGRm), a web server made accessible at http://www.xgrm.pro, with the aim of meeting the increasing demand for effectively interpreting summary-level genomic data in model organisms. Currently, it hosts two enrichment analysers and two subnetwork analysers to support enrichment and subnetwork analyses for user-input mouse genomic data, whether gene-centric or genomic region-centric. The enrichment analysers identify ontology term enrichments for input genes (<em>GElyser</em>) or for genes linked from input genomic regions (<em>RElyser</em>). The subnetwork analysers rely on our previously established network algorithm to identify gene subnetworks from input gene-centric summary data (<em>GSlyser</em>) or from input region-centric summary data (<em>RSlyser</em>), leveraging network information about either functional interactions or pathway-derived interactions. Collectively, XGRm offers an all-in-one solution for gaining systems biology insights into summary-level genomic data in mice, underpinned by our commitment to regular updates as well as natural extensions to other model organisms.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624003140/pdfft?md5=f07be86c74dc5fc6f9f89d97fefb37cf&pid=1-s2.0-S0022283624003140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141690520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BeetleAtlas: An Ontogenetic and Tissue-specific Transcriptomic Atlas of the Red Flour Beetle Tribolium castaneum 甲虫图谱:红面粉甲虫(Tribolium castaneum)的个体发育和组织特异性转录组图集
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168520
{"title":"BeetleAtlas: An Ontogenetic and Tissue-specific Transcriptomic Atlas of the Red Flour Beetle Tribolium castaneum","authors":"","doi":"10.1016/j.jmb.2024.168520","DOIUrl":"10.1016/j.jmb.2024.168520","url":null,"abstract":"<div><p>The red flour beetle <em>Tribolium castaneum</em> has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for <em>Tribolium</em> transcriptomics: BeetleAtlas (<span><span>https://www.beetleatlas.org</span><svg><path></path></svg></span>). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of <em>Tribolium</em>. BeetleAtlas allows one to search for individual <em>Tribolium</em> genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use <em>Drosophila melanogaster</em> gene identifiers to search for related <em>Tribolium</em> genes. For retrieved genes there are options to identify and display the tissue expression of related <em>Tribolium</em> genes or homologous <em>Drosophila</em> genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001074/pdfft?md5=d43ca113651c6eb642cd449e3aad0011&pid=1-s2.0-S0022283624001074-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NNDB: An Expanded Database of Nearest Neighbor Parameters for Predicting Stability of Nucleic Acid Secondary Structures NNDB:用于预测核酸二级结构稳定性的近邻参数扩展数据库。
IF 4.7 2区 生物学
Journal of Molecular Biology Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168549
{"title":"NNDB: An Expanded Database of Nearest Neighbor Parameters for Predicting Stability of Nucleic Acid Secondary Structures","authors":"","doi":"10.1016/j.jmb.2024.168549","DOIUrl":"10.1016/j.jmb.2024.168549","url":null,"abstract":"<div><p>Nearest neighbor thermodynamic parameters are widely used for RNA and DNA secondary structure prediction and to model thermodynamic ensembles of secondary structures. The Nearest Neighbor Database (NNDB) is a freely available web resource (<span><span>https://rna.urmc.rochester.edu/NNDB</span><svg><path></path></svg></span>) that provides the functional forms, parameter values, and example calculations. The NNDB provides the 1999 and 2004 set of RNA folding nearest neighbor parameters. We expanded the database to include a set of DNA parameters and a set of RNA parameters that includes m<sup>6</sup>A in addition to the canonical RNA nucleobases. The site was redesigned using the Quarto open-source publishing system. A downloadable PDF version of the complete resource and downloadable sets of nearest neighbor parameters are available.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002228362400144X/pdfft?md5=0e570dd624af08cd501a916c5bb24b55&pid=1-s2.0-S002228362400144X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信