Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions最新文献

筛选
英文 中文
Proper Orthogonal Decomposition Analysis and Braking Control on Hydrodynamic Retarders by Bionic Iris Effective Diameter Regulation 基于仿生虹膜有效直径调节的液力缓速器正交分解分析及制动控制
Xiuqi Chen, Wei Wei, Tangzhu Liu, Wenhao Xie, Yi-Fen Li, Wang Zhuo, Wang Ruolin, Qindong Yan
{"title":"Proper Orthogonal Decomposition Analysis and Braking Control on Hydrodynamic Retarders by Bionic Iris Effective Diameter Regulation","authors":"Xiuqi Chen, Wei Wei, Tangzhu Liu, Wenhao Xie, Yi-Fen Li, Wang Zhuo, Wang Ruolin, Qindong Yan","doi":"10.1115/gt2021-60208","DOIUrl":"https://doi.org/10.1115/gt2021-60208","url":null,"abstract":"\u0000 AIris, a flat circular membrane in the middle layer of human eyeball, is controlled by sympathetic nerve and can automatically adjust pupil size according to light intensity to limit the amount of light entering the eyeball. This paper attempts to introduce the artificial iris diameter changing mechanism into hydrodynamic machinery, that is, to control the hydrodynamic retarder without filling fluid by changing the inner diameter of iris and changing the flow path of retarder. Through the decomposition and reconstruction of the intrinsic flow field, the flow field characteristics of the iris retarder are deeply understood, and the fast prediction of the braking torque is realized. At the same time, the close-loop controller is designed to control the iris opening that realizing the adaptive adjustment of the output torque of the retarder, thus overcoming the difficulty on-line observation of actual filling rate of oil problem and the inaccurate tracking of braking torque on traditional hydrodynamic retarder with filling rate control. Our work prove that the nonlinear controller can achieve fast and accurate torque closed-loop torque control in various braking conditions compared with the hydrodynamic rate control retarder, and the potential of iris mechanism for adaptive control of hydrodynamic retarder is verified.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"308 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114283300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Turbomachine for Clean and Sustainable Hydrocarbon Cracking 清洁可持续烃裂化的新型涡轮装置
Dylan Rubini, Liping Xu, B. Rosic, Harri Johannesdahl
{"title":"A New Turbomachine for Clean and Sustainable Hydrocarbon Cracking","authors":"Dylan Rubini, Liping Xu, B. Rosic, Harri Johannesdahl","doi":"10.1115/gt2021-59197","DOIUrl":"https://doi.org/10.1115/gt2021-59197","url":null,"abstract":"\u0000 Decarbonising highly energy-intensive industrial processes is imperative if nations are to comply with anthropogenic greenhouse gas emissions targets by 2050. This is a significant challenge for high-temperature industrial processes, such as hydrocarbon cracking, and there have been limited developments thus far. The novel concept presented in this study aims to replace the radiant section of a hydrocarbon cracking plant with a novel turbo-reactor. This is one of the first major and potentially successful attempts at decarbonising the petrochemical industry. Rather than using heat from the combustion of natural gas, the novel turbo-reactor can be driven by an electric motor powered by renewable electricity. Switching the fundamental energy transfer mechanism from surface heat exchange to mechanical energy transfer significantly increases the exergy efficiency of the process. Theoretical analysis and numerical simulations show that the ultra-high aerodynamic loading rotor is able to impart substantial mechanical energy into the feedstock without excess temperature difference and temperature magnitude. A complex shockwave system then transforms the kinetic energy into internal energy over an extremely short distance. The version of the turbo-reactor developed and presented in this study uses a single rotor row, in which a multi-stage configuration is achieved regeneratively by guiding the flow through a toroidal-shaped vaneless space. This configuration leads to a reduction in reactor volume by more than two orders of magnitude compared with a conventional furnace. A significantly lower wall surface temperature, supersonic gas velocities and a shorter primary gas path enable a controlled reduction in the residence time for chemical reactions, which optimises the yield. For the same reasons, the conditions for coke deposition on the turbo-reactor surfaces are unfavourable, leading to an increase in plant availability. This study demonstrates that the mechanical work input into the feedstock can be dissipated through an intense turbulent mixing process which maintains an ideal and controlled pressure level for cracking. Numerical calculations show that the turbulence intensity increases by nearly an order of magnitude relative to that in a industrial radiant reaction tube, which can be favourable for accelerating the chemical kinetics.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129636306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Turbomachinery Loss Analysis: The Relationship Between Mechanical Work Potential and Entropy Analyses 涡轮机械损失分析:机械功势与熵分析的关系
J. Leggett, Yaomin Zhao, E. Richardson, R. Sandberg
{"title":"Turbomachinery Loss Analysis: The Relationship Between Mechanical Work Potential and Entropy Analyses","authors":"J. Leggett, Yaomin Zhao, E. Richardson, R. Sandberg","doi":"10.1115/gt2021-59436","DOIUrl":"https://doi.org/10.1115/gt2021-59436","url":null,"abstract":"\u0000 Physics-based loss analysis methods have been developed to interpret the detailed three-dimensional and time-dependent predictions of turbomachinery CFD simulations. This paper contrasts two analysis methods for assessing loss: entropy loss analysis (Zhao & Sandberg, GT2019-90126) and mechanical work potential analysis (Miller, GT2013-95488). The two individual analyses are applied to high-fidelity simulation data for linear high-pressure compressor and high-pressure turbine cascades. The results show each analysis captures the loss generating processes in different ways, corresponding to different terms in their equations. The key loss generation processes are shown to be turbulent and mean viscous dissipation in the mechanical work potential analysis, and mean viscous dissipation and turbulence production in the entropy loss analysis. A relationship between the two approaches is derived rigorously, providing a means to convert between the results of the two approaches, enabling designers to assess individual stage performance using the entropy-based analysis and multiple stages in terms of mechanical work potential, by using the same reference pressure.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126885085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Aerodynamic Design Optimization of a Variable Geometry Nozzle Vane For Automotive Turbochargers 汽车涡轮增压器变几何喷管叶片气动设计优化
Lee Galloway, S. Kim, Jongyoon Park, S. Kwon, Sejong Yoo
{"title":"Aerodynamic Design Optimization of a Variable Geometry Nozzle Vane For Automotive Turbochargers","authors":"Lee Galloway, S. Kim, Jongyoon Park, S. Kwon, Sejong Yoo","doi":"10.1115/gt2021-59616","DOIUrl":"https://doi.org/10.1115/gt2021-59616","url":null,"abstract":"\u0000 An aerodynamic design optimization study of the nozzle vane of a variable geometry turbine (VGT) turbocharger for a diesel engine application was conducted using the commercial software, ANSYS CFX and DesignXplorer. The nozzle design was optimized at three critical engine operating points. The nozzle shape was parameterized using key design parameters including theta angle, thickness value and opening angle. For a good balance of computational time and accuracy, the optimization approach adopted meta-models and response surfaces to represent the training data and reduce the number of simulations required to reach an optimal design.\u0000 Finally, more than 300 optimized designs were simulated to assess the performance and characteristics of each design. The final optimized nozzle design met all the design constraints and showed an improvement of up to 2% efficiency and reduced the maximum torque by 20% compared to the baseline nozzle.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114845743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical Investigation of Unsteady Combustor Turbine Interaction For Flexible Power Generation 柔性发电非定常燃烧室-涡轮相互作用的数值研究
F. Presti, Marwick Sembritzky, Benjamin Winhart, Pascal Post, F. Mare, A. Wiedermann, Johannes Greving, Robert Krewinkel
{"title":"Numerical Investigation of Unsteady Combustor Turbine Interaction For Flexible Power Generation","authors":"F. Presti, Marwick Sembritzky, Benjamin Winhart, Pascal Post, F. Mare, A. Wiedermann, Johannes Greving, Robert Krewinkel","doi":"10.1115/GT2021-59329","DOIUrl":"https://doi.org/10.1115/GT2021-59329","url":null,"abstract":"\u0000 With the growing importance of regenerative power generation and especially of a hydrogen-based economy, the full potential of gas turbines of the smaller output class (< 10 MW) can be ideally exploited to provide peak coverage of the energy need whilst stabilising the electric grids in the mid- and low-voltage range. Such machines can be typically started in a relatively short time (similarly to aero engines) and are capable, at the same time, of delivering dispatchable power-on-demand.\u0000 A safe, stable and profitable operation under highly unsteady conditions poses renewed challenges for an optimal thermal management (especially in the HP stages) as well as control and surveillance of the machines. The understanding and hence predictability of the propagation of the temperature inhomogeneities originating at the combustor outlet remains hence a primary objective of current research, as persistent distortion patterns could be adopted at the turbine exhaust as diagnostic indications of a malfunction of the combustor, for example.\u0000 In the present study low-frequency disturbances introduced by a periodic load variation have been simulated and superimposed to the inhomogeneous, unsteady flow entering a 3-stage, high-pressure industrial gas turbine fed by a can-type combustion chamber comprising 6 silo-burners. The effects of the unsteadiness realized at the combustor exit have been investigated by means of Detached Eddy Simulations, whereby a density-based solution approach with detailed thermodynamics has been employed. The periodic disturbances at the turbine inlet have been obtained by means of an artificially generated, unsteady field, resulting from a two-dimensional snapshot of the flow field at the combustor exit. Also, a combustor failure has been mimicked by reducing (respectively increasing) the mean temperature in some of the turbine inlet regions corresponding to the outlet of two burners. The propagation and amplitude changes of temperature fluctuations have been analyzed in the frequency domain. Tracking of the temperature fluctuations’ maxima at the lowest frequencies revealed characteristic migration patterns indicating that the corresponding fluctuations persist with a non-negligible amplitude up to the last rows. A distinct footprint could also be observed at the same locations when a combustor failure was simulated, showing that, in principle, the early detection of combustor failures is indeed possible.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"191 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123004189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progresses in Particle-Laden Flows Simulations in Multistage Turbomachinery With OpenFOAM 基于OpenFOAM的多级涡轮机械颗粒流动模拟研究进展
Stefano Oliani, R. Friso, N. Casari, M. Pinelli, A. Suman, M. Carnevale
{"title":"Progresses in Particle-Laden Flows Simulations in Multistage Turbomachinery With OpenFOAM","authors":"Stefano Oliani, R. Friso, N. Casari, M. Pinelli, A. Suman, M. Carnevale","doi":"10.1115/gt2021-59474","DOIUrl":"https://doi.org/10.1115/gt2021-59474","url":null,"abstract":"\u0000 Numerical simulations of particle-laden flows have received growing attention in the last decade, due to the broad spectrum of industrial applications in which discrete phases prediction is of interest. Among these, ingestion of particles by turbomachinery is an area that is seeing vivid research and studies. The most common technique to tackle this kind of problem is the Eulerian-Lagrangian method, in which individual particles are tracked inside the domain. At the same time, in multi-stage turbomachinery simulations interfaces are needed to couple the flow solution in adjacent domains in relative motion. In this work, an open-source extension for Lagrangian simulations in multistage rotating machines is presented in the foam-extend environment. Firstly, a thorough discussion of the implementation is presented, with particular emphasis on particle passage through General Grid Interfaces (GGI) and mixing planes. Moreover, a mass-conservative particle redistribution technique is described, as such a property is requested at interfaces between Multiple Reference Frame (MRF). The peculiarities of the algorithm are then shown on a relevant test-case. Eventually, three turbomachinery applications are presented, with growing complexity, to show the capabilities of the numerical code in real-life applications. Simulation results in terms of erosion and impacts on aerodynamic surfaces are also presented as examples of possible parameters of interest in particle-laden flow computations.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125363306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Effect of Accelerating Convergence in Adjoining 1D Domains Having Large Difference in Thermal Time Scales 热时标差较大的相邻一维域加速收敛效应
Tanvi K. Kaushik, Liang Wang, J. Basani, Fang Xu
{"title":"Effect of Accelerating Convergence in Adjoining 1D Domains Having Large Difference in Thermal Time Scales","authors":"Tanvi K. Kaushik, Liang Wang, J. Basani, Fang Xu","doi":"10.1115/gt2021-59012","DOIUrl":"https://doi.org/10.1115/gt2021-59012","url":null,"abstract":"\u0000 Combustor liners are subjected to high operating temperatures and high temperature gradients, which have an adverse effect on the durability of liners. Accurate prediction of liner wall temperature distribution can provide better insight into the design of effective cooling systems that have the potential to improve liner structure life.\u0000 When compared to RANS (Reynolds averaged Navier Stokes), LES (Large eddy simulation) framework provides better accuracy in resolving the large range of temporal and spatial scales of turbulent flow inside combustors. In simulations in which an unsteady LES fluid solver is interacting with an unsteady solid thermal solver, it would be impractical to advance and synchronize fluid and solid domains in physical time, due to a large difference between small fluid time scales set by turbulence and large solid time scales set by the thermal inertia of the solid. By advancing the fluid and solid solvers with different time step sizes, or by loosely coupling fluid and solid solvers such that they communicate at a defined frequency, convergence can be artificially accelerated. The convergence of the predicted temperature field solution is dependent on the implementation methodology of the acceleration techniques.\u0000 A combustor liner is subjected to hot turbulent gases on one side of its boundary and relatively colder air on the other side. This scenario is analyzed to understand the effect of accelerating convergence on the temperature field in a simplified 1D linear framework. A representative polychromatic temperature wave that a combustor liner is subjected to, is used in defining the boundary condition of a 1D implicit unsteady heat conduction solver.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125990593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel End-End System for Combustor Design and Analysis 新型燃烧室设计与分析的端-端系统
Ashwin Kannan, J. Thewlis, A. Keskin
{"title":"Novel End-End System for Combustor Design and Analysis","authors":"Ashwin Kannan, J. Thewlis, A. Keskin","doi":"10.1115/gt2021-60016","DOIUrl":"https://doi.org/10.1115/gt2021-60016","url":null,"abstract":"\u0000 High quality geometry creation is a key step in the design process for complex modern turbomachinery subsystems such as an annular combustor assembly. In particular, parametric generation of 3D CAD geometry is an enabler for design studies and multi-disciplinary analysis. In a traditional approach, 3D CAD models are either created in a bespoke manner with respect to the engine of interest or if a parametric approach is used, the geometry is for one particular combustor configuration, which typically leads to insufficient flexibility for topological variations. In either of these cases for every combustor design, substantial manual efforts are involved in geometry creation as well as in geometry manipulation towards creation of a truncated sector model suitable for meshing and analysis. A more flexible and fully parametric approach in highly integrated and automated design processes during all product design phases is therefore necessary.\u0000 The present paper focuses on the exploitation and integration of a novel geometry modelling approach into an existing and well-established combustor design and analysis system called Prometheus in order to achieve a massive step toward a fully End-to-End (E2E) system. The new system is enabling rapid combustor design and analysis by combining feature-based geometry modelling approach that enables automatic creation of an analysis compatible combustor assembly with a geometry-centric optimization system. The automated design system can manipulate 3D geometry, to create necessary script files for meshing, simulation and post-processing for a typical CFD analysis, and execute the process to analyze different designs with respect to defined design objectives and constraints. The improved system enables engineers to assess different design concepts quickly early in the design process by providing best trade-offs between design objectives but also allows the use of detailed simulation models and boundary conditions in later more mature designs stages.\u0000 The paper will discuss the robustness and flexibility of the underlying parametric CAD approach, how it augments the downstream processes, which is able to handle and translate significant topological changes throughout the E2E system. It will also clearly demonstrate the efficiency gain of the automated combustor design process, which enables design engineers to make better decision faster.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128752697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Investigation of the Low-Swirl Flow in an Aeronautical Combustor With Angular Air Supply 角向送风航空燃烧室低旋流流动的数值研究
S. Hoffmann, R. Koch, H. Bauer
{"title":"Numerical Investigation of the Low-Swirl Flow in an Aeronautical Combustor With Angular Air Supply","authors":"S. Hoffmann, R. Koch, H. Bauer","doi":"10.1115/gt2021-59286","DOIUrl":"https://doi.org/10.1115/gt2021-59286","url":null,"abstract":"\u0000 Civil air traffic is predicted to further grow in the near future. Hence, the development of aeronautical combustors will face major challenges to meet future stringent environmental regulations. In the present study, an innovative gas turbine combustor with angular air supply called Short Helical Combustor (SHC) is investigated. The main feature of this concept is the helical arrangement of the fuel injectors around the turbine shaft. Aiming at the implementation of a lean-burn concept, a low-swirl lifted flame is adopted. This flame is lifted off and not anchored to the injector which opens the potential of low NOx emissions due to a high degree of premixing within the combustor.\u0000 In this work, isothermal flow characteristics of such a generic SHC combustor are studied by use of RANS predictions with special emphasis on the interaction of adjacent low-swirl flows. For evaluating the influence of injector parameters on the flow field, a parametric study based on single sector simulations is performed. It is shown that the asymmetrically confined swirling jet flow is strongly deflected towards the sidewall of the staggered SHC dome. The deflection of the flow is associated with an asymmetric pressure field in the vicinity of the burner which is generally known as Coandă effect. As a consequence of the deflected flow, the angular momentum flux at combustor outlet is increased.\u0000 The interaction of the low-swirl jet and the SHC sidewall is investigated with regards to backflow momentum and residence time in the recirculation zone. It is concluded that by modifying the momentum of the air flow through the injector, the amount of recirculating air flowing back along combustor walls is strongly affected. The present work establishes an understanding of the underlying aerodynamics of the SHC concept which is essential for matching the requirements of lean lifted flames.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122803831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Extension of Harmonic Balance Approach for Large-Eddy Simulation of Unsteady Flows in Cascade 叶栅非定常流场大涡模拟中谐波平衡法的推广
Yuma Iwamoto, S. Teramoto, K. Okamoto
{"title":"Extension of Harmonic Balance Approach for Large-Eddy Simulation of Unsteady Flows in Cascade","authors":"Yuma Iwamoto, S. Teramoto, K. Okamoto","doi":"10.1115/gt2021-59193","DOIUrl":"https://doi.org/10.1115/gt2021-59193","url":null,"abstract":"\u0000 A full scale-resolving simulation of cascades flutter is time consuming because of computational inefficiency owing to its low nondimensional frequencies. To improve the efficiency and reliability of the numerical analyses for such flows, we propose an efficient scale-resolving simulation method dedicated to time-periodic flows by extending the harmonic balance approach to a large-eddy simulation. This method combines convergence calculations of the steady-state problem based on the harmonic balance method for periodic components, and the nonlinear time-marching method for small scale turbulent fluctuations. Using the proposed method, deterministic periodic components and stochastic turbulent fluctuations are calculated simultaneously, and the effect of turbulent fluctuations on deterministic periodic components is directly calculated without using turbulence models. In this paper, we present the algorithm of the simulation technique and the progress of validation calculations for channel flow excited in the streamwise direction.","PeriodicalId":369703,"journal":{"name":"Volume 2C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126071739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信