International Journal of Turbomachinery, Propulsion and Power最新文献

筛选
英文 中文
Impact of Unsteady Wakes on the Secondary Flows of a High-Speed Low-Pressure Turbine Cascade 非定常尾迹对高速低压涡轮叶栅二次流动的影响
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-22 DOI: 10.3390/ijtpp8040036
Gustavo Lopes, Loris Simonassi, Sergio Lavagnoli
{"title":"Impact of Unsteady Wakes on the Secondary Flows of a High-Speed Low-Pressure Turbine Cascade","authors":"Gustavo Lopes, Loris Simonassi, Sergio Lavagnoli","doi":"10.3390/ijtpp8040036","DOIUrl":"https://doi.org/10.3390/ijtpp8040036","url":null,"abstract":"The aerodynamics of a high-speed low-pressure turbine (LPT) cascade were investigated under steady and unsteady inlet flows. The tests were performed at outlet Mach (M) and Reynolds numbers (Re) of 0.90 and 70k, respectively. Unsteady wakes were simulated by means of a wake generator equipped with bars. A bar reduced frequency (f+) of ∼0.95 was used for the unsteady case. The inlet flow field was characterized in terms of the total pressure profile and incidence. The blade aerodynamics at midspan and the secondary flow region were investigated by means of pneumatic taps and hot-film sensors. The latter provided a novel view into the impact of the secondary flows on the heat transfer topology on the blade suction side (SS). The cascade performance was quantified in terms of the outlet flow angle and losses by means of a directional multi-hole probe. The results report the phase-averaged impact of unsteady wakes on the secondary flow structures in an open test case high-speed LPT geometry.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136011104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Characterization of Unsteady Leakage Flow in an Axial Fan 轴流风机非定常泄漏流特性研究
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-13 DOI: 10.3390/ijtpp8030034
Matteo Dellacasagrande, Edward Canepa, Andrea Cattanei, Mehrdad Moradi
{"title":"Characterization of Unsteady Leakage Flow in an Axial Fan","authors":"Matteo Dellacasagrande, Edward Canepa, Andrea Cattanei, Mehrdad Moradi","doi":"10.3390/ijtpp8030034","DOIUrl":"https://doi.org/10.3390/ijtpp8030034","url":null,"abstract":"The present work reports an experimental study of the leakage flow in a low-speed fan ring. Existing 2D Particle Image Velocimetry (PIV) measurements taken in a meridional plane in front of the rotor gap have been further processed and analyzed by means of the Proper Orthogonal Decomposition (POD). Three values of the dimensionless pressure rise across the rotor have been investigated. Namely, attention has been focused on the intermediate case—the one for which a strong radial oscillation in the leakage flow has been observed: POD results have shown that, in this condition, the leakage flow exhibits periodic radial oscillations that are not correlated to the periodic blade passing. Moreover, such coherent motions have been found to promote turbulence transport at different radial positions, whereas rotor-related oscillations have a negligible effect in this sense. The present POD procedure can be generally applied to turbomachinery flows to characterize their unsteady behavior beside the classical phase-averaging methods based on rotor-related quantities. The present approach is novel for the study of leakage flow dynamics in axial fans.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135781632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Periodic Incoming Wakes on the Aerodynamics of a High-Speed Low-Pressure Turbine Cascade 周期性来流尾迹对高速低压涡轮叶栅气动特性的影响
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-13 DOI: 10.3390/ijtpp8030035
Loris Simonassi, Gustavo Lopes, Sergio Lavagnoli
{"title":"Effects of Periodic Incoming Wakes on the Aerodynamics of a High-Speed Low-Pressure Turbine Cascade","authors":"Loris Simonassi, Gustavo Lopes, Sergio Lavagnoli","doi":"10.3390/ijtpp8030035","DOIUrl":"https://doi.org/10.3390/ijtpp8030035","url":null,"abstract":"The influence of unsteady wakes incoming from the upstream stages is of high relevance in modern high-speed, low-pressure turbines (LPT) operating at transonic exit Mach numbers and low Reynolds numbers for their potential to trigger transition and influence the separation of the boundary layer on the blade suction side. The aim of this paper is the experimental characterization of the influence of incoming wakes on the 2D aerodynamics of a high-speed LPT cascade operating at a low Reynolds number and transonic exit Mach number. A detailed analysis of the status of the flow along the blade under investigation and its impact on the profile loss are presented for a range of Mach numbers from 0.70 to 0.95 and Reynolds numbers from 70k to 120k under steady and unsteady inflow conditions. Tests were conducted at on- and off-design engine realistic conditions in the VKI S-1/C wind tunnel on the SPLEEN C1 transonic cascade. The wakes incoming from an upstream blade row have been replicated using a set of rotating bars, which shed wakes at an engine-representative reduced frequency (f+=0.95) and flow coefficient (Φ=0.80). A set of densely instrumented traversable blades were used to sample the surface pressure distributions. The development of the boundary layers along the blade suction side is examined through quasi-wall shear stress obtained with surface-mounted hot-film sensors. Wake traverses were carried out downstream of the cascade with a miniaturized L-shaped five-hole probe to characterize the blade losses. The introduction of periodic incoming wakes promotes variations in the flow topology over the blade. The effect on the suction side separation bubble is shown to depend on the exit flow conditions. At low Mach numbers, the incoming wakes determine a reduction in the size of the bubble; in contrast, this effect is not registered as the exit Mach number increases. Consistently, a high dependence of the unsteady wake effect on the profile loss on the exit Reynolds and Mach numbers is demonstrated.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134990241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Acoustic Boundary Conditions for Can-Annular Combustors 罐式环形燃烧器的声学边界条件
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-08 DOI: 10.3390/ijtpp8030032
James Brind
{"title":"Acoustic Boundary Conditions for Can-Annular Combustors","authors":"James Brind","doi":"10.3390/ijtpp8030032","DOIUrl":"https://doi.org/10.3390/ijtpp8030032","url":null,"abstract":"This paper derives and validates an analytical model for acoustic boundary conditions on a can-annular gas turbine combustion system composed of discrete cans connected to an open annulus upstream of a turbine. The analytical model takes one empirical parameter: a connection impedance between adjacent cans. This impedance is extracted from time-marching computations of two-can sectors of representative combustors. The computations show that reactance follows the Rayleigh conductivity, while resistance takes a value of order 0.1 as a weak function of geometry. With a calibrated value of acoustic resistance, the analytical model reproduces can-to-can transfer functions predicted by full-annulus computations to within 0.03 magnitude at compact frequencies. Varying the combustor–turbine gap length, both model and computations exhibit a minimum in reflected energy, which drops by 63% compared to the datum gap. A parametric study yields a design guideline for gap length at the minimum reflected energy, allowing the designer to maximise transmission from the combustion system and reduce damping requirements.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47780742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of Static Pressure Recovery of Rotor-Only Low-Pressure Axial Fans 纯转子低压轴流风机静压恢复潜力
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-08 DOI: 10.3390/ijtpp8030033
Hauke Witte, C. Bode, Jens Friedrichs
{"title":"Potential of Static Pressure Recovery of Rotor-Only Low-Pressure Axial Fans","authors":"Hauke Witte, C. Bode, Jens Friedrichs","doi":"10.3390/ijtpp8030033","DOIUrl":"https://doi.org/10.3390/ijtpp8030033","url":null,"abstract":"Typically installed in a rotor-only configuration, low-pressure axial fans discharge directly into a free atmosphere and the discharge shows a strong swirl component. Since such designs, without guide vanes, cannot convert the dynamic pressure in the swirl component back into static pressure, the dynamic pressure is usually considered a loss. However, the radial equilibrium shows that a significant part of the kinetic energy contained in this swirl component is recovered as static pressure in the free atmosphere. This additional pressure increase has been sparsely researched. A comparison between two configurations with and without outlet guide vanes allows for the formulation of an evaluation criterion of the rotor-only configuration. Utilizing this evaluation criterion, the investigation of velocity profiles corresponding to generic rotor designs shows promise in terms of pressure recovery for new designs.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48243320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Validation of a Numerical Coupling Environment Applying FEM and CFD 应用有限元和CFD的数值耦合环境的实验验证
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-04 DOI: 10.3390/ijtpp8030031
Christopher Hartmann, Julia Schweikert, F. Cottier, Ute Israel, Jochen Gier, Jens von Wolfersdorf
{"title":"Experimental Validation of a Numerical Coupling Environment Applying FEM and CFD","authors":"Christopher Hartmann, Julia Schweikert, F. Cottier, Ute Israel, Jochen Gier, Jens von Wolfersdorf","doi":"10.3390/ijtpp8030031","DOIUrl":"https://doi.org/10.3390/ijtpp8030031","url":null,"abstract":"Experimental results for the transient heat transfer characteristics over a flat plate and over a plate with V-shaped ribs were compared to numerical results from a coupling environment applying FEM and CFD. In order to simulate transient effects in the cooling process of engine components during typical flight missions, the temperature and the velocity at the inlet of the channel were varied over time. The transient temperature distribution at the plate was measured using infrared thermography. Five different plate materials (perspex, PEEK, quartz, aluminum, and steel) were considered to investigate the influence of thermal conduction on the heat transfer between solid and fluid depending on the Biot number. The experimental results represent a reference database for a Python-based coupling environment applying CalculiX (FEM) and ANSYS CFX (CFD). The results were additionally compared to numerical results simulating the complete transient conjugated heat transfer with CFD. A good agreement between the numerical and the experimental results was achieved using different coupling sizes at different Biot numbers for the flat plate and the plate with V-shaped ribs.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49523575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Tip Gap Size on the Performance of an Axial Compressor Stage with and without Active Flow Control 叶尖间隙尺寸对有无主动流量控制的轴流压气机级性能的影响
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-01 DOI: 10.3390/ijtpp8030030
Clémence Rannou, Julien Marty, Geoffrey Tanguy, A. Dazin
{"title":"Effect of Tip Gap Size on the Performance of an Axial Compressor Stage with and without Active Flow Control","authors":"Clémence Rannou, Julien Marty, Geoffrey Tanguy, A. Dazin","doi":"10.3390/ijtpp8030030","DOIUrl":"https://doi.org/10.3390/ijtpp8030030","url":null,"abstract":"The tip gap region of an axial compressor rotor is a source of complex flows, inducing losses and stability issues. Recent works have proven the ability of blowing high-speed jets in the tip region to improve the surge margin of an axial compressor stage with a narrow tip gap configuration. However, the tip gap size can evolve during the compressor lifetime, possibly affecting its performance and operability. The objective is to evaluate the performance of an active flow control system on a compressor with different tip gap sizes. The present work is based on the single-stage compressor CME2 located at the Laboratory of Fluid Mechanics of Lille and equipped with actuators blowing at the rotor tip leading edge. Configurations with two different values of the tip gap to chord ratio (0.6% and 2.4%) are experimentally tested. RANS simulations are also performed. The effect of tip gap sizes and tip blowing on the flow topology and compressor performance is evaluated (surge margin improvement of the order of 200% for the larger tip gap size).","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42945727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suitability of a Profile with Tubercles for Axial Pumps—Investigation Using Flow Simulation 带圆管型面适用于轴流泵——流动模拟研究
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-09-01 DOI: 10.3390/ijtpp8030029
Mareen Derda, Ferdinand Neumann, P. Thamsen
{"title":"Suitability of a Profile with Tubercles for Axial Pumps—Investigation Using Flow Simulation","authors":"Mareen Derda, Ferdinand Neumann, P. Thamsen","doi":"10.3390/ijtpp8030029","DOIUrl":"https://doi.org/10.3390/ijtpp8030029","url":null,"abstract":"Even if wind tunnel tests and simulations have confirmed that tubercles can influence the behaviour of a profile, research in the field of axial pumps has so far been lacking. However, previous studies cannot be transferred to the application of axial pumps, since the requirements for the profile geometry as well as the Reynolds number range differ. The present study aims to address this research gap by performing a CFD simulation with a profile common for axial pumps, the Goe11K, testing four different tubercle configurations. At the same time, this simulation is a preliminary study for experimental tests. The results show that certain tubercle configurations improve the behaviour of the profile in the post-stall area, i.e., increase the lift of the profile at large angles of attack (α). In general, the curve of the profiles with tubercles runs more evenly, without the drastic drop in lift. This improved property comes at the expense of lower maximum lift and increased drag at lower α. With regard to the use of axial pumps, it can be concluded that there are advantages, particularly in the partial load range. These could ultimately enlarge the operation range of an axial pump.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49540510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Flow Simulation by a Hybrid Two-Phase Solver for the Assessment of Liquid/Gas Transport in a Volute-Type Centrifugal Pump with Twisted Blades 涡旋叶片蜗壳式离心泵液/气输运三维流动模拟研究
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-08-30 DOI: 10.3390/ijtpp8030028
Markus Hundshagen, Kevin Rave, M. Mansour, D. Thévenin, R. Skoda
{"title":"Three-Dimensional Flow Simulation by a Hybrid Two-Phase Solver for the Assessment of Liquid/Gas Transport in a Volute-Type Centrifugal Pump with Twisted Blades","authors":"Markus Hundshagen, Kevin Rave, M. Mansour, D. Thévenin, R. Skoda","doi":"10.3390/ijtpp8030028","DOIUrl":"https://doi.org/10.3390/ijtpp8030028","url":null,"abstract":"A hybrid two-phase flow solver is proposed, based on an Euler–Euler two-fluid model with continuous blending of a Volume-of-Fluid method when phase interfaces of coherent gas pockets are to be resolved. In a preceding study on a two-dimensional bladed research pump with reduced rotational speed, the transition from bubbly flow to coherent steady gas pockets observed in optical experiments with liquid/gas flow could be well captured by the hybrid solver. In the present study, the experiments and solver validation are extended to an industrial-scale centrifugal pump with twisted three-dimensional blades and elevated design rotational speed. The solver is combined with a population balance model, and a scale-adaptive turbulence model is employed. Compared to the two-dimensional bladed pump, the transition from agglomerated bubbles flow to attached gas pockets is shifted to larger gas loading, which is well captured by the simulation. The pump head drop with increasing gas load is also reproduced, showing the hybrid solver’s validity for realistic pump operation conditions.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42353119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the von Karman Shedding Frequency on the Hydrodynamics of a Francis Turbine Operating at Nominal Load von Karman脱落频率对额定负荷下混流式水轮机水动力特性的影响
IF 1.4
International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-08-07 DOI: 10.3390/ijtpp8030027
Giacomo Zanetti, G. Cavazzini, A. Santolin
{"title":"Effect of the von Karman Shedding Frequency on the Hydrodynamics of a Francis Turbine Operating at Nominal Load","authors":"Giacomo Zanetti, G. Cavazzini, A. Santolin","doi":"10.3390/ijtpp8030027","DOIUrl":"https://doi.org/10.3390/ijtpp8030027","url":null,"abstract":"This paper presents a numerical analysis of the influence of the von Karman vortex shedding at the blade trailing edge on the hydrodynamics of a recently installed small hydro Francis turbine manifesting very loud and high-frequency acoustic pulsations when operating close to the nominal load. A reduced single-passage numerical model is developed to reduce the computational effort of the simulation while ensuring high accuracy in the assessment of fluid flow. The accuracy of the proposed numerical approach is investigated by comparing the frequency spectrum of the experimentally acquired acoustic frequency and the numerical pressure signals, confirming the nature of the machine’s vibrations. The validated numerical model represents a useful tool for an in-depth analysis of the machine’s hydrodynamics in the preliminary design phases. The proposed approach represents a valid alternative to the traditional correlation-based approach for the evaluation of the von Karman shedding frequency with less computational effort compared with a transient simulation of the entire machine.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42318575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信