{"title":"An Improved Quantum Inspired Particle Swarm Optimization for Forest Cover Prediction","authors":"Parul Agarwal, Anita Sahoo, Divyanshi Garg","doi":"10.1007/s40745-023-00509-w","DOIUrl":"10.1007/s40745-023-00509-w","url":null,"abstract":"<div><p>Forest cover prediction plays a crucial role in assessing and managing natural resources, biodiversity, and environmental sustainability. Traditional optimization algorithms have been employed for this task, but their effectiveness and efficiency in handling complex forest cover prediction problems are limited. This paper presents a novel approach, Annealing Lévy Quantum Inspired Particle Swarm Optimization (ALQPSO) that combines principles from quantum computing, particle swarm optimization; annealing, and Lévy distribution to enhance the accuracy and efficiency of forest cover prediction models by significant feature selection. The proposed algorithm utilizes quantum-inspired operators, such as quantum rotation gate, superposition, and entanglement, to explore the search space effectively and efficiently. By leveraging the principle of Lévy distribution and annealing, ALQPSO facilitated the exploration of multiple potential solutions simultaneously, leading to improved convergence speed and enhanced solution quality. To evaluate the performance of ALQPSO for forest cover prediction, experiments are conducted on the forest cover dataset. Initially, exploratory data analysis is performed to determine the nature of features. Thereafter, feature selection is performed through the proposed ALQPSO algorithm and compared with Quantum-based PSO (QPSO) and its variants. The experiments are conducted on all potential fields to identify the best among them. The experimental analysis demonstrates that ALQPSO outperforms traditional algorithms in terms of prediction accuracy, convergence speed, and solution quality (in terms of a number of features), highlighting its efficacy in addressing complex forest cover prediction problems.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 6","pages":"2217 - 2233"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139599440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Auxilia Osvin Nancy, P. Prabhavathy, Meenakshi S. Arya
{"title":"Role of Artificial Intelligence and Deep Learning in Skin Disease Prediction: A Systematic Review and Meta-analysis","authors":"V. Auxilia Osvin Nancy, P. Prabhavathy, Meenakshi S. Arya","doi":"10.1007/s40745-023-00503-2","DOIUrl":"10.1007/s40745-023-00503-2","url":null,"abstract":"<div><p>Skin is a most essential and extraordinary part of the human structure. Exposure to chemicals such as nitrates, sunlight, arsenic, and UV rays due to pollution and depletion of the ozone layer is causing various skin diseases to spread rapidly. Digital healthcare offers many opportunities to reduce time, and human error, and improve clinical outcomes. However, the automatic recognition of skin disease is a major challenge due to high visual similarity between different skin diseases, low contrast, and large inter variation. Early detection of skin cancer can prevent death. Thus, Artificial intelligence (AI) and Machine Learning (ML) helps the physicians to improve clinical judgment or change manual perception. For skin cancer diagnostics, the ML/AI algorithm can outperform or match professional dermatologists in multiple studies. Different pre-trained architectures such as ResNet152, AlexNet, VGGNet, etc. are used for fusing different skin disease features such as texture, color, etc. and they are also utilized for conducting segmentation tasks. The variations in reflection, lesion size, shape, illumination, etc. often make automatic skin disease classification a complex task. ISIC 2019 and HAM 10000 are the widely used public datasets for skin disease prediction. More technical paper on skin cancer diagnosis is compared in this study. This report examines the majority of technical papers published between 2018 and October 2022 in order to appreciate current trends in the disciplines of skin cancer prediction. A study that combined clinical patient data with deep learning models (DL) increased the accuracy of predicting skin cancer. This article presents a visually attractive and well-organized summary of the current study findings.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 6","pages":"2109 - 2139"},"PeriodicalIF":0.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-023-00503-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139524140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahabuba Akhter, Syed Md. Minhaz Hossain, Rizma Sijana Nigar, Srabanti Paul, Khaleque Md. Aashiq Kamal, Anik Sen, Iqbal H. Sarker
{"title":"COVID-19 Fake News Detection using Deep Learning Model","authors":"Mahabuba Akhter, Syed Md. Minhaz Hossain, Rizma Sijana Nigar, Srabanti Paul, Khaleque Md. Aashiq Kamal, Anik Sen, Iqbal H. Sarker","doi":"10.1007/s40745-023-00507-y","DOIUrl":"10.1007/s40745-023-00507-y","url":null,"abstract":"<div><p>People may now receive and share information more quickly and easily than ever due to the widespread use of mobile networked devices. However, this can occasionally lead to the spread of false information. Such information is being disseminated widely, which may cause people to make incorrect decisions about potentially crucial topics. This occurred in 2020, the year of the fatal and extremely contagious Coronavirus Disease (COVID-19) outbreak. The spread of false information about COVID-19 on social media has already been labeled as an “infodemic” by the World Health Organization (WHO), causing serious difficulties for governments attempting to control the pandemic. Consequently, it is crucial to have a model for detecting fake news related to COVID-19. In this paper, we present an effective Convolutional Neural Network (CNN)-based deep learning model using word embedding. For selecting the best CNN architecture, we take into account the optimal values of model hyper-parameters using grid search. Further, for measuring the effectiveness of our proposed CNN model, various state-of-the-art machine learning algorithms are conducted for COVID-19 fake news detection. Among them, CNN outperforms with 96.19% mean accuracy, 95% mean F1-score, and 0.985 area under ROC curve (AUC).</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 6","pages":"2167 - 2198"},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139525256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chinta Someswara Rao, Chitri Raminaidu, K. Butchi Raju, B. Sujatha
{"title":"Effective Fake News Classification Based on Lightweight RNN with NLP","authors":"Chinta Someswara Rao, Chitri Raminaidu, K. Butchi Raju, B. Sujatha","doi":"10.1007/s40745-023-00506-z","DOIUrl":"10.1007/s40745-023-00506-z","url":null,"abstract":"<div><p>Data is the most essential thing in the current world. By the year 2024, we will be able to generate 1.9 gigabytes of data per second. The creation of massive amounts of data has led to the birth of a wide range of technologies, which in turn is changing the world. Social media has brought the world to the tip of our fingers. It enables a person to access news from anywhere and at any time, but this has its cons too. It is leading to the spread of fake news and false information, and it is having a negative impact on society. Fake news is manipulated information that is disseminated via social media with the intent of causing harm to a person, agency, or organization. Keeping this view in mind, one must necessarily determine whether or not the news being spread is true before drawing conclusions. This will help avoid confusion among social media users, which is critical for ensuring positive social development. Detecting fake news has become one of the most difficult tasks a person can undertake. To get started with fake news detection, this paper will present a solution for detecting fake news based on recurrent neural networks.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 6","pages":"2141 - 2165"},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139525455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DeepKPred: Prediction and Functional Analysis of Lysine 2-Hydroxyisobutyrylation Sites Based on Deep Learning","authors":"Shiqi Fan, Yan Xu","doi":"10.1007/s40745-023-00504-1","DOIUrl":"10.1007/s40745-023-00504-1","url":null,"abstract":"<div><p>Protein 2-hydroxyisobutyrylation (Khib), a newly identified post-translational modification, plays a role in various cellular processes. To gain a comprehensive understanding of its regulatory mechanisms, it is crucial to identify the sites of 2-hydroxyisobutyrylation. Therefore, we developed a novel ensemble method, DeepKPred, for predicting species-specific 2-hydroxyisobutyrylation sites. We employed one-hot and AAindex encoding schemes to construct features from protein sequences and integrated two densely convolutional neural networks and two long short-term memory networks to build the model. In the 5-fold cross-validation dataset, DeepKPred achieved AUC values of 0.859, 0.804, 0.821, and 0.819 for Human, <i>Candida albicans</i>, Rice, Wheat, and <i>Physcomitrella patens</i>. Additionally, function analysis further indicated that different organisms tend to engage in distinct biological processes and pathways. Detailed analysis can help us learn more about the mechanism of 2-hydroxyisobutyrylation and provide insights for associated experimental verification.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 2","pages":"693 - 707"},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138964498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research","authors":"Mansoureh Beheshti Nejad, Seyed Mahmoud Zanjirchi, Seyed Mojtaba Hosseini Bamakan, Negar Jalilian","doi":"10.1007/s40745-023-00505-0","DOIUrl":"10.1007/s40745-023-00505-0","url":null,"abstract":"<div><p>Blockchain technology has ushered in significant technological disruptions within the operational management sphere, fostering value creation within operational management networks. In recent years, researchers have increasingly explored the potential applications of blockchain across diverse facets of operational management. Recognizing the pivotal role of comprehending prior research endeavors within any scientific domain for the development of a robust theoretical framework and a nuanced understanding of research progression in both the scientific realm and its practical applications, this study aims to identify areas where blockchain can be effectively employed. This objective is accomplished through an exhaustive systematic review of existing research on blockchain applications in the field of operations management. In pursuit of this goal, a comprehensive dataset comprising 9188 papers published up to the year 2020 is amassed and subjected to analysis employing life cycle analysis, bibliometrics, and textual analysis. The outcomes of this research elucidate the emergence of five distinctive clusters within the landscape of blockchain applications in operational management: Decentralized Finance, Traceability, Trust, Sustainability, and Information Sharing. These findings underscore the dynamic and evolving nature of blockchain’s impact in this domain.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 4","pages":"1361 - 1389"},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a New Mixed Pareto–Weibull Distribution: Its Parametric Regression Model with an Insurance Applications","authors":"Deepesh Bhati, Buddepu Pavan, Girish Aradhye","doi":"10.1007/s40745-023-00502-3","DOIUrl":"10.1007/s40745-023-00502-3","url":null,"abstract":"<div><p>This article introduces a new probability distribution suitable for modeling heavy-tailed and right-skewed data sets. The proposed distribution is derived from the continuous mixture of the scale parameter of the Pareto family with the Weibull distribution. Analytical expressions for various distributional properties and actuarial risk measures of the proposed model are derived. The applicability of the proposed model is assessed using two real-world insurance data sets, and its performance is compared with the existing class of heavy-tailed models. The proposed model is assumed for the response variable in parametric regression modeling to account for the heterogeneity of individual policyholders. The Expectation-Maximization (EM) Algorithm is included to expedite the process of finding maximum likelihood (ML) estimates for the parameters of the proposed models. Real-world data application demonstrates that the proposed distribution performs well compared to its competitor models. The regression model utilizing the mixed Pareto–Weibull response distribution, characterized by regression structures for both the mean and dispersion parameters, demonstrates superior performance when compared to the Pareto–Weibull regression model, where the dispersion parameter depends on covariates.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 6","pages":"2077 - 2107"},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138967097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models","authors":"Amaal Elsayed Mubarak, Ehab Mohamed Almetwally","doi":"10.1007/s40745-023-00501-4","DOIUrl":"10.1007/s40745-023-00501-4","url":null,"abstract":"<div><p>Corona virus (Covid-19) is a great danger for whole world. World health organization (WHO) considered it an epidemic. Data collection was based on the reports of World health organization for Covid-19 in Egypt. The problem of this study is to describe actual behavior of the virus using an appropriate statistical model. As WHO stated, Covid-19 behaves in the form of waves, therefore we thought that we should pay attention to seasonal and periodical models when identifying an appropriate model for this virus. The aim of this article is to introduce and study Periodical Autoregressive integrated Moving Average (PARIMA) models and compare them with the Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average (SARIMA) models to find optimal or approximately optimal model helps to predict the epidemiological behavior of the prevalence and so find reliable future forecasts of the number of Covid-19 injuries in Egypt. A numerical study using real data analysis is performed to establish an appropriate PARIMA model. The results supported the reliance of PAR (7) odel and its use for the purpose of forecasting. Extensive comparisons have been made between the estimated PARIMA model and some other advanced time series models. The forecasts obtained from the estimated PARIMA model were compared with the forecasts obtained from ARIMA (2, 2, 2) and SARIMA (1, 2, 1), (0, 0 ,1) models.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 4","pages":"1483 - 1502"},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139266775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shayan Frouzanfar, Maryam Omidi Najafabadi, Seyed Mehdi Mirdamadi
{"title":"Statistical Modelling for Pandemic Crisis Management in Universities","authors":"Shayan Frouzanfar, Maryam Omidi Najafabadi, Seyed Mehdi Mirdamadi","doi":"10.1007/s40745-023-00499-9","DOIUrl":"10.1007/s40745-023-00499-9","url":null,"abstract":"<div><p>The purpose of this research is to explain the crisis management model of agricultural faculties in pandemic conditions. This descriptive-correlation research was conducted using a survey method. The staff and teachers of the agricultural faculties from universities in the Tehran province (493 people) constitute the statistical population of this research. Using Cochran's relationship and the size of the statistical population, the number of samples was estimated to be 240, and the samples were selected using the stratified random sampling method. The main tool of this research was a researcher-made questionnaire whose validity and reliability were tested and confirmed. In order to analyze data and test research hypotheses, structural equation modeling with a partial least squares approach and PLS Smart software were used. The results showed that formulation of laws and policies with a path coefficient of 0.137, diversification of financial resources with a path coefficient of 0.323, development and strengthening of infrastructure with a path coefficient of 0.245, communication with a path coefficient of 0.102, and human resources management with a path coefficient of 0.363 have significantly positive impacts on the pandemic crisis management, which directly explained 84.8% of the changes related to the variable of pandemic crisis management in the university. Moreover, pandemic crisis management at the university has a positive and significant effect on the sustainability of higher education with a path coefficient of 0.453, and it has the ability to predict 20.5% of changes in the sustainability of higher education.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 4","pages":"1459 - 1481"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134909131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Nonparametric Test for Randomly Censored Data","authors":"Ayushee, Narinder Kumar, Manish Goyal","doi":"10.1007/s40745-023-00500-5","DOIUrl":"10.1007/s40745-023-00500-5","url":null,"abstract":"<div><p>A nonparametric test for the testing of scale parameters, is proposed in two-sample situation with random censored data. Random censored data are mostly encountered in clinical studies, where some individuals experience the event of interest (death); some are drop-outs or loss to follow-ups and some are still alive at the end of study. The performance of test is studied by comparing it with some existing tests in terms of asymptotic relative efficiency. Critical values required for the test are computed. Statistical power of the test is assessed through simulation study with varying sample sizes and varying censoring percentages. The working of test is illustrated by applying it to a real-life data set.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"11 6","pages":"2059 - 2075"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134910148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}