{"title":"A Publicly Verifiable E-Voting System Based on Biometrics","authors":"Jinhui Liu, Tianyi Han, Maolin Tan, Bo Tang, Wei Hu, Yong Yu","doi":"10.3390/cryptography7040062","DOIUrl":"https://doi.org/10.3390/cryptography7040062","url":null,"abstract":"Voters use traditional paper ballots, a method limited by the factors of time and space, to ensure their voting rights are exercised; this method requires a lot of manpower and resources. Duplicate voting problems may also occur, meaning the transparency and reliability of the voting results cannot be guaranteed. With the rapid developments in science and technology, E-voting system technology is being adopted more frequently in election activities. However, E-voting systems still cannot address the verifiability of the election process; the results of a given election and the credibility of the host organization will be questioned if the election’s verifiability cannot be ensured. Elections may also pose a series of problems related to privacy, security, and so on. To address these issues, this paper presents a public, and verifiable E-voting system with hidden statistics; this system is based on commitment, zk-SNARKs, and machine learning. The system can deal with a large number of candidates, complex voting methods, and result functions in counting both hidden and public votes and can satisfy the requirements of verifiability, privacy, security, and intelligence. Our security analysis shows that our scheme achieves privacy, hidden vote counting and verifiability. Our performance evaluation demonstrates that our system has reasonable applications in real scenarios.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139220718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-11-23DOI: 10.3390/cryptography7040061
Mingfei Yu, Dewmini Sudara Marakkalage, Giovanni De Micheli
{"title":"Garbled Circuits Reimagined: Logic Synthesis Unleashes Efficient Secure Computation","authors":"Mingfei Yu, Dewmini Sudara Marakkalage, Giovanni De Micheli","doi":"10.3390/cryptography7040061","DOIUrl":"https://doi.org/10.3390/cryptography7040061","url":null,"abstract":"Garbled circuit (GC) is one of the few promising protocols to realize general-purpose secure computation. The target computation is represented by a Boolean circuit that is subsequently transformed into a network of encrypted tables for execution. The need for distributing GCs among parties, however, requires excessive data communication, called garbling cost, which bottlenecks system performance. Due to the zero garbling cost of XOR operations, existing works reduce garbling cost by representing the target computation as the XOR-AND graph (XAG) with minimal structural multiplicative complexity (MC). Starting with a thorough study of the cipher-text efficiency of different types of logic primitives, for the first time, we propose XOR-OneHot graph (X1G) as a suitable logic representation for the generation of low-cost GCs. Our contribution includes (a) an exact algorithm to synthesize garbling-cost-optimal X1G implementations for small-scale functions and (b) a set of logic optimization algorithms customized for X1Gs, which together form a robust optimization flow that delivers high-quality X1Gs for practical functions. The effectiveness of the proposals is evidenced by comprehensive evaluations: compared with the state of the art, 7.34%, 26.14%, 13.51%, and 4.34% reductions in garbling costs are achieved on average for the involved benchmark suites, respectively, with reasonable runtime overheads.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Study of Keccak SHA-3 Implementations","authors":"Alessandra Dolmeta, Maurizio Martina, Guido Masera","doi":"10.3390/cryptography7040060","DOIUrl":"https://doi.org/10.3390/cryptography7040060","url":null,"abstract":"This paper conducts an extensive comparative study of state-of-the-art solutions for implementing the SHA-3 hash function. SHA-3, a pivotal component in modern cryptography, has spawned numerous implementations across diverse platforms and technologies. This research aims to provide valuable insights into selecting and optimizing Keccak SHA-3 implementations. Our study encompasses an in-depth analysis of hardware, software, and software–hardware (hybrid) solutions. We assess the strengths, weaknesses, and performance metrics of each approach. Critical factors, including computational efficiency, scalability, and flexibility, are evaluated across different use cases. We investigate how each implementation performs in terms of speed and resource utilization. This research aims to improve the knowledge of cryptographic systems, aiding in the informed design and deployment of efficient cryptographic solutions. By providing a comprehensive overview of SHA-3 implementations, this study offers a clear understanding of the available options and equips professionals and researchers with the necessary insights to make informed decisions in their cryptographic endeavors.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139257042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-11-17DOI: 10.3390/cryptography7040059
Xian Guo, Ye Li, Yongbo Jiang, Jing Wang, Junli Fang
{"title":"Privacy-Preserving k-Nearest Neighbor Classification over Malicious Participants in Outsourced Cloud Environments","authors":"Xian Guo, Ye Li, Yongbo Jiang, Jing Wang, Junli Fang","doi":"10.3390/cryptography7040059","DOIUrl":"https://doi.org/10.3390/cryptography7040059","url":null,"abstract":"In recent years, many companies have chosen to outsource data and other data computation tasks to cloud service providers to reduce costs and increase efficiency. However, there are risks of security and privacy breaches when users outsource data to a cloud environment. Many researchers have proposed schemes based on cryptographic primitives to address these risks under the assumption that the cloud is a semi-honest participant and query users are honest participants. However, in a real-world environment, users’ data privacy and security may be threatened by the presence of malicious participants. Therefore, a novel scheme based on secure multi-party computation is proposed when attackers gain control over both the cloud and a query user in the paper. We prove that our solution can satisfy our goals of security and privacy protection. In addition, our experimental results based on simulated data show feasibility and reliability.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139266023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-11-10DOI: 10.3390/cryptography7040057
Yamin Li
{"title":"Hardware Implementations of Elliptic Curve Cryptography Using Shift-Sub Based Modular Multiplication Algorithms","authors":"Yamin Li","doi":"10.3390/cryptography7040057","DOIUrl":"https://doi.org/10.3390/cryptography7040057","url":null,"abstract":"Elliptic curve cryptography (ECC) over prime fields relies on scalar point multiplication realized by point addition and point doubling. Point addition and point doubling operations consist of many modular multiplications of large operands (256 bits for example), especially in projective and Jacobian coordinates which eliminate the modular inversion required in affine coordinates for every point addition or point doubling operation. Accelerating modular multiplication is therefore important for high-performance ECC. This paper presents the hardware implementations of modular multiplication algorithms, including (1) interleaved modular multiplication (IMM), (2) Montgomery modular multiplication (MMM), (3) shift-sub modular multiplication (SSMM), (4) SSMM with advance preparation (SSMMPRE), and (5) SSMM with CSAs and sign detection (SSMMCSA) algorithms, and evaluates their execution time (the number of clock cycles and clock frequency) and required hardware resources (ALMs and registers). Experimental results show that SSMM is 1.80 times faster than IMM, and SSMMCSA is 3.27 times faster than IMM. We also present the ECC hardware implementations based on the Secp256k1 protocol in affine, projective, and Jacobian coordinates using the IMM, SSMM, SSMMPRE, and SSMMCSA algorithms, and investigate their cost and performance. Our ECC implementations can be applied to the design of hardware security module systems.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-11-09DOI: 10.3390/cryptography7040056
Berry Schoenmakers, Toon Segers
{"title":"Secure Groups for Threshold Cryptography and Number-Theoretic Multiparty Computation","authors":"Berry Schoenmakers, Toon Segers","doi":"10.3390/cryptography7040056","DOIUrl":"https://doi.org/10.3390/cryptography7040056","url":null,"abstract":"In this paper, we introduce secure groups as a cryptographic scheme representing finite groups together with a range of operations, including the group operation, inversion, random sampling, and encoding/decoding maps. We construct secure groups from oblivious group representations combined with cryptographic protocols, implementing the operations securely. We present both generic and specific constructions, in the latter case specifically for number-theoretic groups commonly used in cryptography. These include Schnorr groups (with quadratic residues as a special case), Weierstrass and Edwards elliptic curve groups, and class groups of imaginary quadratic number fields. For concreteness, we develop our protocols in the setting of secure multiparty computation based on Shamir secret sharing over a finite field, abstracted away by formulating our solutions in terms of an arithmetic black box for secure finite field arithmetic or for secure integer arithmetic. Secure finite field arithmetic suffices for many groups, including Schnorr groups and elliptic curve groups. For class groups, we need secure integer arithmetic to implement Shanks’ classical algorithms for the composition of binary quadratic forms, which we will combine with our adaptation of a particular form reduction algorithm due to Agarwal and Frandsen. As a main result of independent interest, we also present an efficient protocol for the secure computation of the extended greatest common divisor. The protocol is based on Bernstein and Yang’s constant-time 2-adic algorithm, which we adapt to work purely over the integers. This yields a much better approach for multiparty computation but raises a new concern about the growth of the Bézout coefficients. By a careful analysis, we are able to prove that the Bézout coefficients in our protocol will never exceed 3max(a,b) in absolute value for inputs a and b. We have integrated secure groups in the Python package MPyC and have implemented threshold ElGamal and threshold DSA in terms of secure groups. We also mention how our results support verifiable multiparty computation, allowing parties to jointly create a publicly verifiable proof of correctness for the results accompanying the results of a secure computation.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-11-05DOI: 10.3390/cryptography7040064
T. Andronikos, A. Sirokofskich
{"title":"One-to-Many Simultaneous Secure Quantum Information Transmission","authors":"T. Andronikos, A. Sirokofskich","doi":"10.3390/cryptography7040064","DOIUrl":"https://doi.org/10.3390/cryptography7040064","url":null,"abstract":"This paper presents a new quantum protocol designed to transmit information from one source to many recipients simultaneously. The proposed protocol, which is based on the phenomenon of entanglement, is completely distributed and is provably information-theoretically secure. Numerous existing quantum protocols guarantee secure information communication between two parties but are not amenable to generalization in situations where the source must transmit information to two or more recipients. Hence, they must be executed sequentially two or more times to achieve the desired goal. The main novelty of the new protocol is its extensibility and generality to situations involving one party that must simultaneously communicate different, in general, messages to an arbitrary number of spatially distributed parties. This is achieved in the special way employed to encode the transmitted information in the entangled state of the system, one of the distinguishing features compared with previous protocols. This protocol can prove expedient whenever an information broker, say, Alice, must communicate distinct secret messages to her agents, all in different geographical locations, in one go. Due to its relative complexity compared with similar cryptographic protocols, as it involves communication among n parties and relies on |GHZn⟩ tuples, we provide an extensive and detailed security analysis so as to prove that it is information-theoretically secure. Finally, in terms of its implementation, the prevalent characteristics of the proposed protocol are its uniformity and simplicity, because it only requires CNOT and Hadamard gates and the local quantum circuits are identical for all information recipients.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139288802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-11-01DOI: 10.3390/cryptography7040055
Kusum Lata, Linga Reddy Cenkeramaddi
{"title":"FPGA-Based PUF Designs: A Comprehensive Review and Comparative Analysis","authors":"Kusum Lata, Linga Reddy Cenkeramaddi","doi":"10.3390/cryptography7040055","DOIUrl":"https://doi.org/10.3390/cryptography7040055","url":null,"abstract":"Field-programmable gate arrays (FPGAs) have firmly established themselves as dynamic platforms for the implementation of physical unclonable functions (PUFs). Their intrinsic reconfigurability and profound implications for enhancing hardware security make them an invaluable asset in this realm. This groundbreaking study not only dives deep into the universe of FPGA-based PUF designs but also offers a comprehensive overview coupled with a discerning comparative analysis. PUFs are the bedrock of device authentication and key generation and the fortification of secure cryptographic protocols. Unleashing the potential of FPGA technology expands the horizons of PUF integration across diverse hardware systems. We set out to understand the fundamental ideas behind PUF and how crucially important it is to current security paradigms. Different FPGA-based PUF solutions, including static, dynamic, and hybrid systems, are closely examined. Each design paradigm is painstakingly examined to reveal its special qualities, functional nuances, and weaknesses. We closely assess a variety of performance metrics, including those related to distinctiveness, reliability, and resilience against hostile threats. We compare various FPGA-based PUF systems against one another to expose their unique advantages and disadvantages. This study provides system designers and security professionals with the crucial information they need to choose the best PUF design for their particular applications. Our paper provides a comprehensive view of the functionality, security capabilities, and prospective applications of FPGA-based PUF systems. The depth of knowledge gained from this research advances the field of hardware security, enabling security practitioners, researchers, and designers to make wise decisions when deciding on and implementing FPGA-based PUF solutions.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-10-30DOI: 10.3390/cryptography7040054
Anastasios Bikos, Panagiotis E. Nastou, Georgios Petroudis, Yannis C. Stamatiou
{"title":"Random Number Generators: Principles and Applications","authors":"Anastasios Bikos, Panagiotis E. Nastou, Georgios Petroudis, Yannis C. Stamatiou","doi":"10.3390/cryptography7040054","DOIUrl":"https://doi.org/10.3390/cryptography7040054","url":null,"abstract":"In this paper, we present approaches to generating random numbers, along with potential applications. Rather than trying to provide extensive coverage of several techniques or algorithms that have appeared in the scientific literature, we focus on some representative approaches, presenting their workings and properties in detail. Our goal is to delineate their strengths and weaknesses, as well as their potential application domains, so that the reader can judge what would be the best approach for the application at hand, possibly a combination of the available approaches. For instance, a physical source of randomness can be used for the initial seed; then, suitable preprocessing can enhance its randomness; then, the output of preprocessing can feed different types of generators, e.g., a linear congruential generator, a cryptographically secure one and one based on the combination of one-way hash functions and shared key cryptoalgorithms in various modes of operation. Then, if desired, the outputs of the different generators can be combined, giving the final random sequence. Moreover, we present a set of practical randomness tests that can be applied to the outputs of random number generators in order to assess their randomness characteristics. In order to demonstrate the importance of unpredictable random sequences, we present an application of cryptographically secure generators in domains where unpredictability is one of the major requirements, i.e., eLotteries and cryptographic key generation.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136023034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CryptographyPub Date : 2023-10-20DOI: 10.3390/cryptography7040053
Eufemia Lella, Giovanni Schmid
{"title":"On the Security of Quantum Key Distribution Networks","authors":"Eufemia Lella, Giovanni Schmid","doi":"10.3390/cryptography7040053","DOIUrl":"https://doi.org/10.3390/cryptography7040053","url":null,"abstract":"The main purpose of a quantum key distribution network is to provide secret keys to any users or applications requiring a high level of security, ideally such as to offer the best protection against any computational attack, even of a quantum nature. The keys shared through a point-to-point link between a source and a detector using a quantum key distribution protocol can be proven information-theoretically secure based on the quantum information theory. However, evaluating the security of a quantum key distribution network, especially if it is based on relay nodes, goes far beyond the quantum security of its single quantum links, involving aspects of conventional security for devices and their communication channels. In this contribution, we perform a rigorous threat analysis based on the most recent recommendations and practical network deployment security issues. We show that, at least in the current state of our understanding of quantum cryptography, quantum key distribution networks can only offer computational security and that their security in practical implementations in the shorter term requires resorting to post-quantum cryptography.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}