{"title":"Effect of Aerodynamic Moment on High-Speed Maglev Train Under Complicated Conditions","authors":"Zhanzhou Hao, B. Yin, Guowei Yang, Pan Xiao","doi":"10.1115/fedsm2021-61883","DOIUrl":"https://doi.org/10.1115/fedsm2021-61883","url":null,"abstract":"\u0000 As the next generation of high-speed rail transportation, the high-speed maglev train has a design speed of 600km/h, whose Mach number is about 0.49. The severe aerodynamic effect caused by this high speed has a substantial impact on the train’s stability and safety. In this paper, the aerodynamic moments of two three-carriage maglev trains passing by each other in open air are investigated by numerical simulation. To get transient moments acting on the train, this study adopted the sliding mesh method and the k-ε turbulent model, and a user-defined function was compiled to define the motion of maglev. The results show that the pitching moment is the most important factor for the steady of maglev trains running in the open air. The oscillation of the total aerodynamic moment mainly comes from the moment acting on the lower part. The coupling of the pitching moment acting on the upper and lower part of carriages make the peak of the total pitching moment behind the total yawing moment.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123852707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Aerodynamics on Line Sail During Parachute Deployment","authors":"Mingzhang Tang, Liwu Wang, Yu Liu, Sijun Zhang","doi":"10.1115/fedsm2021-65585","DOIUrl":"https://doi.org/10.1115/fedsm2021-65585","url":null,"abstract":"\u0000 This paper presents a dynamic model to numerically simulate the parachute deployment for space vehicle recovery system. In the proposed dynamic model, the deployment bag and the space vehicle are treated as a six-degree-of-freedom rigid body with mass varied and a regular six-degree-of-freedom rigid body, respectively. The parachute system is considered as the mass spring damper model, in which the canopy, suspension lines, risers and bridles are discretized into some three-degree-of-freedom segments with their centralized mass on the end points. During the deployment a notable phenomenon can be observed and so-called line sail. The line sail generally occurs during a deployment in which the relative wind is not parallel to the deployment direction. The line sail has been known to cause or contribute to the following problems: increased deployment times, changes in snatch load, asymmetrical deployment, friction damage, and unpredictable canopy inflation. To understand its mechanisms, the effects of aerodynamics such as angle of flight path, deployment bag ejection velocity, Mach number, air density and wind velocity are numerically investigated.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131116804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harnessing the Power of the Cloud - Computational Fluid Dynamics With SimScale","authors":"Jousef Murad","doi":"10.1115/fedsm2021-66406","DOIUrl":"https://doi.org/10.1115/fedsm2021-66406","url":null,"abstract":"\u0000 Computational fluid dynamics is a computational method that enables engineers and designers to study the motion of fluids through computer simulations and modelling. Many tools on the market are so-called “in-house” tools requiring a certain level of expertise and upfront investment before proving their added value. Facilitated by the emergence of cloud computing, computer-aided engineering (CAE) technology is now offered as a software as a service (SaaS) solution, which increases its accessibility and ease of use. Online fluid flow (CFD) simulation is used in addressing a broad variety of problems like electronics design or pedestrian wind comfort (PWC), allowing engineers to accurately predict fluid flow behaviour guiding them towards smarter design decisions. SimScale is creating a paradigm shift for high-performance computing which can solve several problems that are faced when using on-premises software.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133447347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Puyuan Wu, Ang Li, Jun Chen, P. Sojka, Yang Li, Hongjun Cao
{"title":"Flow Characterization in the Upper Cavity of a Rotary Compressor","authors":"Puyuan Wu, Ang Li, Jun Chen, P. Sojka, Yang Li, Hongjun Cao","doi":"10.1115/fedsm2021-65868","DOIUrl":"https://doi.org/10.1115/fedsm2021-65868","url":null,"abstract":"\u0000 As hundreds of millions of Air conditioning (AC) systems are produced each year, and many of them use rotary compressors as the heat pump, optimizing the flow inside the rotary compressor to improve its reliability and efficiency becomes a key issue of the manufactures. Since the invention of the rotary compressor, its internal flow has been studied numerically with real models. However, a rotary compressor’s internal flow can be extremely complicated due to the complex internal structures’ geometry and high-speed moving parts, making it difficult to interpret the result by CFD simulation and repeat the simulation in different models. In our experiments for observing lubricant oil droplets above the rotor/stator in a rotary compressor, droplets’ movement reveals that two major effects control the gas flow in the compressor’s upper cavity. One is the swirling jet produced by the high-speed rotating rotor with no-slip condition on its sidewall. The other one is the rotating disk effect induced by the top of the high-speed rotating rotor. Either of them has been studied individually in different areas. For example, the swirling jet is often used in combustors while the rotating disk is applied in the viscous pump. However, the coupling of these two effects in the rotary compressor with different velocity ranges, size scales, and fluid properties has not been studied according to our best knowledge. In our simulation, a model that only consists of a simplified rotor, simplified stator, sidewall, and discharge tube (outlet) is built. Thus, the effect by small parts, such as the balance block and coils, is excluded. The rotor is set to rotate at 30, 60, and 90 Hz. Uniform velocity calculated with the theoretical flow rate and ambient pressure conditions are given at the inlet (rotor/stator clearance) and outlet, respectively. No-slip conditions are defined at other walls. Steady-state K-ω SST turbulence models are applied, and the cases are computed with OpenFoam. The CFD results show an inner recirculation zone above the rotor that creates a downward velocity component above the rotor and an outer circulation zone above the stator. The CFD result meets the observation of the droplets’ movement above the rotor/stator. With the CFD results and the experiment’s observations, we propose the model of the oil droplet’s path in the rotary compressor’s upper cavity, which can help reduce the exhausted lubricant oil droplets from the compressor.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115329798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Wing Kinematics on Modulating Odor Plume Structures in the Odor Tracking Flight of Fruit Flies","authors":"Menglong Lei, Chengyu Li","doi":"10.1115/fedsm2021-61832","DOIUrl":"https://doi.org/10.1115/fedsm2021-61832","url":null,"abstract":"\u0000 Insects rely on their olfactory system to forage, prey, and mate. They can sense odorant plumes emitted from sources of their interests with their bilateral odorant antennae, and track down odor sources using their highly efficient flapping-wing mechanism. The odor-tracking process typically consists of two distinct behaviors: surging upwind and zigzagging crosswind. Despite the extensive numerical and experimental studies on the flying trajectories and wing flapping kinematics during odor tracking flight, we have limited understanding of how the flying trajectories and flapping wings modulate odor plume structures. In this study, a fully coupled three-way numerical solver is developed, which solves the 3D Navier-Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant convection-diffusion equation. This numerical solver is applied to investigate the unsteady flow field and the odorant transport phenomena of a fruit fly model in both surging upwind and zigzagging crosswind cases. The unsteady flow generated by flapping wings perturbs the odor plume structure and significantly impacts the odor intensity at the olfactory receptors (i.e., antennae). During zigzagging crosswind flight, the differences in odor perception time and peak odor intensity at the receptors potentially help create stereo odorant mapping to track odor source. Our simulation results will provide new insights into the mechanism of how fruit flies perceive odor landscape and inspire the future design of odor-guided micro aerial vehicles (MAVs) for surveillance and detection missions.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122033308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Improved Level-Set-Based Immersed Boundary Reconstruction Method for Computing Bio-Inspired Underwater Propulsion","authors":"Yu Pan, Haibo Dong, Wei Zhang","doi":"10.1115/fedsm2021-65599","DOIUrl":"https://doi.org/10.1115/fedsm2021-65599","url":null,"abstract":"\u0000 The immersed boundary method (IBM) has been widely employed to study bio-inspired underwater propulsion which often involves the high Reynolds number, complex body morphologies and large computational domain. Due to these problems, the immersed boundary (IB) reconstruction can be very costly in a simulation. Based on our previous work, an improved level-set-based immersed boundary method (LS-IBM) has been developed in this paper by introducing the narrow-band technique. Comparing with the previous LS-IBM, the narrowband level-set-based immersed boundary method (NBLS-IBM) is only required to propagate the level set values from the points near the boundaries to all the points in the narrow band. This improvement reduces the computational cost from O((LD/Δx)3) to O(k(LD/Δx)2). By simulating a steady-swimming Jackfish-like body, the consistency and stability of the new reconstruction method in the flow solver have been verified. Applications to a dolphin-like body swimming and a shark-like body swimming are used to demonstrate the efficiency and accuracy of the NBLS-IBM. The time for reconstructions shows that the reconstruction efficiency can increase up to 64.6% by using the NBLS-IBM while keeping the accuracy and robustness of the original LS-IBM. The vortex wake of the shark-like body in steady swimming shows the robustness, fastness and compatibility of the NBLS-IBM to our current flow solver.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126222556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Versatile IBM-Based AMR Method for Studying Human Snoring","authors":"Wei Zhang, Yu Pan, Yuchen Gong, Haibo Dong, J. Xi","doi":"10.1115/fedsm2021-65790","DOIUrl":"https://doi.org/10.1115/fedsm2021-65790","url":null,"abstract":"\u0000 In this work, a local adaptive mesh refinement (AMR) embedded incompressible flow solver is developed for biomedical flows. This AMR technique is based on the block-structured mesh and adapted from an in-house numerical solver for the Navier-Stokes equations with immersed-boundary method embedded, which is suitable for flows with complex and moving boundaries in biomedical applications. Flow behavior of the human upper airway under various head-neck postures is evaluated using the developed AMR technique, where the head-neck posture is hypothesized to change the cross-sectional area of the airway, therefore the airflow and aerodynamic behavior. The anatomically accurate three-dimensional human upper airway model is reconstructed from human magnetic resonance images (MRI) with measurements from the literature. Analyses were performed on vortex dynamics and pressure fluctuations in the pharyngeal airway. It was found that the vortex formation and aerodynamic pressure were affected by the airway bending. The sniffing position or the head-neck junction extension posture tend to facilitate the airflow through the upper human airway.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126436930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Urbanowicz, H. Jing, A. Bergant, M. Stosiak, M. Lubecki
{"title":"Progress in Analytical Modeling of Water Hammer","authors":"K. Urbanowicz, H. Jing, A. Bergant, M. Stosiak, M. Lubecki","doi":"10.1115/fedsm2021-65920","DOIUrl":"https://doi.org/10.1115/fedsm2021-65920","url":null,"abstract":"\u0000 In this paper analytical formulas of water hammer known from the literature are simplified to the shortest possible mathematical form based on dimensionless parameters: dimensionless time, water hammer number, etc. Novel formulas are determined, for example for the flow velocity and wall shear stress in the Muto and Takahashi solution. A complete solution in the Laplace domain is presented and the problem of its inverse transformation is discussed. A series of comparative studies of analytical solutions with numerical solutions and the results of experimental research were carried out. The compared analytical solutions, taking into account the frequency-dependent nature of the hydraulic resistances, show very good agreement with the experimental results in a wide range of water hammer numbers, in particular when Wh ≤ 0.1. On the other hand, it turned out that the analytical model based on the quasi-steady friction in great detail simulates dynamic pressure response in systems characterized by a high value of the water hammer number Wh ≥ 0.5.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130568009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Study on Radiative Aerothermodynamics of a Reentry Space Vehicle","authors":"Qi Li, Sijun Zhang","doi":"10.1115/fedsm2021-61455","DOIUrl":"https://doi.org/10.1115/fedsm2021-61455","url":null,"abstract":"\u0000 Under hypersonic flight conditions, a vehicle travelling through the atmosphere could excite the air that flows around the body to very high temperatures as the kinetic energy of the vehicle is dissipated to the gas. Depending on the flight velocity, various chemical reactions will be produced behind a shock wave for stagnation region. These reactions greatly change the properties of air and cause considerable deviation from those of a thermally and calorically perfect gas. A vehicle flying through the higher altitude of the atmosphere at high velocities may also experience thermal non-equilibrium since the lower density reduces the collision frequency and the high velocity results in smaller transit times for the air molecules. Under such extremely thermal circumstances, the heat transfer by convection and radiation around a vehicle has been one of key issues for thermal protection system (TPS). In this paper, the computational aerothermodynamics with fully coupled radiative heat transfer is developed. To validate the proposed approach, it is employed to simulate the thermal and chemical nonequilibrium flows over Stardust. The computed results on the reentry space vehicle reveal both of convective flux and radiative flux are in good agreements with other predicted results.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132412654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Asada, Kimie Ito, S. Sekimoto, K. Fujii, M. Koishi, Toshiyuki Ikeda
{"title":"Analysis of Aeroacoustic Generated From a Rotating Tire With a Longitudinal Groove Using Large-Eddy Simulation","authors":"K. Asada, Kimie Ito, S. Sekimoto, K. Fujii, M. Koishi, Toshiyuki Ikeda","doi":"10.1115/fedsm2021-66009","DOIUrl":"https://doi.org/10.1115/fedsm2021-66009","url":null,"abstract":"Flow fields obtained by large-eddy simulations around a rotating tire with the longitudinal groove are investigated to clarify the relationships between the shape parameters of the grooves and the directivity of aeroacoustic noise and to clarify noise sources. To obtain acoustic field around the rotating tire, the large-eddy simulations using the sixth-order compact finite difference scheme and the tridiagonal filter are performed. The four computational cases including the case without groove are considered in the present study. The proper orthogonal decomposition (POD) analysis revealed the distribution of bipolar modes that spread from the tire to the left and right. This result indicates two symmetrical sound sources near the front of the tire side surface regardless of the presence or absence of the groove shape. It is also found that the presence of grooves in the tire weakens the amplitude of the POD mode that spreads to the left and right. This fact is consistent with the fact that the sound pressure level on the lateral side of the tire weakens as the groove width widens. Based on the observation of the instantaneous field and these analyzes, the following is found. The noise-induced by the flow around the tire considered in the present study is emitted when the turbulent flow generated in front of the tire collides with the tire and flows along the tire’s side surface. Besides, when the tire has a groove, a part of the flow that collides with the tire flows into the groove so that the flow rate flowing on the side surface of the tire decreases and the noise itself also decreases. Therefore, the wider the tire’s groove width, the less noise is emitted from the tire’s lateral side.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128447403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}