Effects of Aerodynamics on Line Sail During Parachute Deployment

Mingzhang Tang, Liwu Wang, Yu Liu, Sijun Zhang
{"title":"Effects of Aerodynamics on Line Sail During Parachute Deployment","authors":"Mingzhang Tang, Liwu Wang, Yu Liu, Sijun Zhang","doi":"10.1115/fedsm2021-65585","DOIUrl":null,"url":null,"abstract":"\n This paper presents a dynamic model to numerically simulate the parachute deployment for space vehicle recovery system. In the proposed dynamic model, the deployment bag and the space vehicle are treated as a six-degree-of-freedom rigid body with mass varied and a regular six-degree-of-freedom rigid body, respectively. The parachute system is considered as the mass spring damper model, in which the canopy, suspension lines, risers and bridles are discretized into some three-degree-of-freedom segments with their centralized mass on the end points. During the deployment a notable phenomenon can be observed and so-called line sail. The line sail generally occurs during a deployment in which the relative wind is not parallel to the deployment direction. The line sail has been known to cause or contribute to the following problems: increased deployment times, changes in snatch load, asymmetrical deployment, friction damage, and unpredictable canopy inflation. To understand its mechanisms, the effects of aerodynamics such as angle of flight path, deployment bag ejection velocity, Mach number, air density and wind velocity are numerically investigated.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a dynamic model to numerically simulate the parachute deployment for space vehicle recovery system. In the proposed dynamic model, the deployment bag and the space vehicle are treated as a six-degree-of-freedom rigid body with mass varied and a regular six-degree-of-freedom rigid body, respectively. The parachute system is considered as the mass spring damper model, in which the canopy, suspension lines, risers and bridles are discretized into some three-degree-of-freedom segments with their centralized mass on the end points. During the deployment a notable phenomenon can be observed and so-called line sail. The line sail generally occurs during a deployment in which the relative wind is not parallel to the deployment direction. The line sail has been known to cause or contribute to the following problems: increased deployment times, changes in snatch load, asymmetrical deployment, friction damage, and unpredictable canopy inflation. To understand its mechanisms, the effects of aerodynamics such as angle of flight path, deployment bag ejection velocity, Mach number, air density and wind velocity are numerically investigated.
降落伞展开过程中空气动力学对线帆的影响
本文建立了空间飞行器回收系统降落伞展开过程的动力学模型。在所提出的动力学模型中,将展开袋和航天器分别视为变质量六自由度刚体和规则六自由度刚体。将降落伞系统视为质量弹簧阻尼器模型,将伞盖、悬索、立管和缰绳离散成若干个三自由度的段,其质量集中在端点上。在部署过程中,可以观察到一个值得注意的现象,即所谓的线帆。线帆通常发生在相对风与部署方向不平行的部署过程中。已知绳帆会导致或导致以下问题:部署时间增加、抓斗载荷变化、不对称部署、摩擦损坏和不可预测的伞盖膨胀。为了了解其机理,对飞行路径角、展开袋弹射速度、马赫数、空气密度和风速等空气动力学因素的影响进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信