C. Flett, Alan D. Martin, Mikhail (Misha) G. Ryskin, T. Teubner
{"title":"Implications of exclusive J/$psi$ photoproduction in a tamed collinear factorisation approach to NLO","authors":"C. Flett, Alan D. Martin, Mikhail (Misha) G. Ryskin, T. Teubner","doi":"10.21468/scipostphysproc.15.005","DOIUrl":"https://doi.org/10.21468/scipostphysproc.15.005","url":null,"abstract":"We discuss exclusive J/psiψ photoproduction, initially in conventional collinear factorisation at NLO and then subsequently in a refined approach with a programme of low x resummation and implementation of a crucial low Q_0Q0 subtraction included. We compare and contrast predictions in both frameworks and remark about the possibility to constrain and ultimately determine the low x and low scale gluon PDF, emphasising the significance of this for future global PDF analyses.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"179 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140754904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intermittency analysis of charged hadrons generated in Pb-Pb collisions at $sqrt{s_{NN}}$= 2.76 TeV and 5.02 TeV","authors":"S. K. Malik, Ramni Gupta","doi":"10.21468/scipostphysproc.15.012","DOIUrl":"https://doi.org/10.21468/scipostphysproc.15.012","url":null,"abstract":"Local density fluctuations are expected to scale as a universal power-law when the system approaches critical point. Such power-law fluctuations are studied within the framework of intermittency through the measurement of normalized factorial moments in (etaη, phiϕ) phase space. Observations and results from the intermittency analysis performed for charged particles in Pb-Pb collisions using PYTHIA8/Angantyr at 2.76 TeV and 5.02 TeV are reported. We observe no scaling behaviour in the particle generation for any of the centrality studied in narrow p_TT bins. The scaling exponent nuν shows no dependence on the centrality ranges.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"73 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140755425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unitary Howe dualities in fermionic and bosonic algebras and related Dirac operators","authors":"Guner Muarem","doi":"10.21468/scipostphysproc.14.038","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.038","url":null,"abstract":"<jats:p>In this paper we use the canonical complex structure <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{J}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝕁</mml:mi></mml:math></jats:alternatives></jats:inline-formula> on <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{R}^{2n}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math></jats:alternatives></jats:inline-formula> to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra <jats:inline-formula><jats:alternatives><jats:tex-math>mathfrak{su}(1,2)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> which leads to the Howe dual pair <jats:inline-formula><jats:alternatives><jats:tex-math>(U(n),mathfrak{su}(1,2))</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>U</mml:mi><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>.</jats:p>","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"32 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed permutation symmetry quantum phase transitions of critical three-level atom models","authors":"A. Mayorgas, J. Guerrero, Manuel Calixto","doi":"10.21468/scipostphysproc.14.036","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.036","url":null,"abstract":"We define the concept of Mixed Symmetry Quantum Phase Transition (MSQPT), considering each permutation symmetry sector muμ of an identical particles system, as singularities in the properties of the lowest-energy state into each muμ when shifting a Hamiltonian control parameter lambdaλ. A three-level Lipkin-Meshkov-Glick (LMG) model is chosen to typify our construction. Firstly, we analyze the finite number NN of particles case, proving the presence of MSQPT precursors. Then, in the thermodynamic limit Nto∞N→∞, we calculate the lowest-energy density inside each sector muμ, augmenting the control parameter space by muμ, and showing a phase diagram with four different quantum phases.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139240920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clocking mechanism from a minimal spinning particle model","authors":"Tobiasz Pietrzak, Łukasz Bratek","doi":"10.21468/scipostphysproc.14.042","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.042","url":null,"abstract":"The clock hypothesis plays an important role in the theory of relativity. To test this hypothesis, a mechanical model of an ideal clock is needed. Such a model should have the phase of its intrinsic periodic motion increasing linearly with the affine parameter of the clock’s center of mass worldline. A class of relativistic rotators introduced by Staruszkiewicz in the context of an ideal clock is studied. A singularity in the inverse Legendre transform leading from the Hamiltonian to the Lagrangian leads to new possible Lagrangians characterized by fixed values of mass and spin. In free motion the rotators exhibit intrinsic motion with the speed of light and fixed frequency.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"59 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vinberg's T-algebras: From exceptional periodicity to black hole entropy","authors":"A. Marrani","doi":"10.21468/SciPostPhysProc.14.035","DOIUrl":"https://doi.org/10.21468/SciPostPhysProc.14.035","url":null,"abstract":"We introduce the so-called Magic Star (MS) projection within the root lattice of finite-dimensional exceptional Lie algebras, and relate it to rank-3 simple and semi-simple Jordan algebras. By relying on the Bott periodicity of reality and conjugacy properties of spinor representations, we present the so-called Exceptional Periodicity (EP) algebras, which are finite-dimensional algebras, violating the Jacobi identity, and providing an alternative with respect to Kac-Moody infinite-dimensional Lie algebras. Remarkably, also EP algebras can be characterized in terms of a MS projection, exploiting special Vinberg T-algebras, a class of generalized Hermitian matrix algebras introduced by Vinberg in the ’60s within his theory of homogeneous convex cones. As physical applications, we highlight the role of the invariant norm of special Vinberg T-algebras in Maxwell-Einstein-scalar theories in 5 space-time dimensions, in which the Bekenstein-Hawking entropy of extremal black strings can be expressed in terms of the cubic polynomial norm of the T-algebras.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"64 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The parastatistics of braided Majorana fermions","authors":"Francesco Toppan","doi":"10.21468/SciPostPhysProc.14.046","DOIUrl":"https://doi.org/10.21468/SciPostPhysProc.14.046","url":null,"abstract":"This paper presents the parastatistics of braided Majorana fermions obtained in the framework of a graded Hopf algebra endowed with a braided tensor product. The braiding property is encoded in a t-dependent 4×4 braiding matrix B_tBt related to the Alexander-Conway polynomial. The nonvanishing complex parameter t defines the braided parastatistics. At t=1 ordinary fermions are recovered. The values of t at roots of unity are organized into levels which specify the maximal number of braided Majorana fermions in a multiparticle sector. Generic values of t and the t=-1 root of unity mimick the behaviour of ordinary bosons.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"2007 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spin degrees of freedom incorporated in conformal group: Introduction of an intrinsic momentum operator","authors":"Seiichi Kuwata","doi":"10.21468/scipostphysproc.14.034","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.034","url":null,"abstract":"<jats:p>Considering spin degrees of freedom incorporated in the conformal generators, we introduce an intrinsic momentum operator <jats:inline-formula><jats:alternatives><jats:tex-math>pi_mu</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>π</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, which is feasible for the Bhabha wave equation. If a physical state <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> for spin s is annihilated by the <jats:inline-formula><jats:alternatives><jats:tex-math>pi_mu</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>π</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, the degree of <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, deg <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, should equal twice the spin degrees of freedom, <jats:inline-formula><jats:alternatives><jats:tex-math>2 ( 2 s + 1)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mn>2</mml:mn><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>2</mml:mn><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> for a massive particle, where the multiplicity <jats:inline-formula><jats:alternatives><jats:tex-math>2</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mn>2</mml:mn></mml:math></jats:alternatives></jats:inline-formula> indicates the chirality. The relation deg <jats:inline-formula><jats:alternatives><jats:tex-math>psi_{ph}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> = 2(2s+1) holds in the representation <jats:inline-formula><jats:alternatives><jats:tex-math>R_5</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msub><mml:mi>R</mml:mi><mml","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"2016 15-16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Möbius gyrogroup and Möbius gyrovector space","authors":"Kurosh Mavaddat Nezhaad, A. Ashrafi","doi":"10.21468/scipostphysproc.14.041","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.041","url":null,"abstract":"<jats:p>Gyrogroups are new algebraic structures that appeared in 1988 in the study of Einstein’s velocity addition in the special relativity theory. These new algebraic structures were studied intensively by Abraham Ungar. The first gyrogroup that was considered into account is the unit ball of Euclidean space <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{R}^3</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math></jats:alternatives></jats:inline-formula> endowed with Einstein’s velocity addition. The second geometric example of a gyrogroup is the complex unit disk <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝔻</mml:mi></mml:math></jats:alternatives></jats:inline-formula>={z ∈ <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{C}: |z|<1</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mi>ℂ</mml:mi><mml:mo>:</mml:mo><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">|</mml:mo><mml:mi>z</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">|</mml:mo></mml:mrow><mml:mo><</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>}. To construct a gyrogroup structure on <jats:inline-formula><jats:alternatives><jats:tex-math>mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝔻</mml:mi></mml:math></jats:alternatives></jats:inline-formula>, we choose two elements <jats:inline-formula><jats:alternatives><jats:tex-math>z_1, z_2 ∈mathbb{D}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>∈</mml:mo><mml:mi>𝔻</mml:mi></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> and define the Möbius addition by <jats:inline-formula><jats:alternatives><jats:tex-math>z_1oplus z_2 = frac{z_1+z_2}{1+bar{z_1}z_2}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mover><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo accent=\"true\">‾</mml:mo></mml:mover><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mfrac></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>. Then <jats:inline-formula><jats:alternatives><jats:tex-math>(mathbb{D},oplus)</jats:","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"40 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relativistic kinematics in flat and curved space-times","authors":"Patrick Moylan","doi":"10.21468/scipostphysproc.14.037","DOIUrl":"https://doi.org/10.21468/scipostphysproc.14.037","url":null,"abstract":"Almost immediately after the seminal papers of Poincaré (1905,1906) and Einstein (1905) on special relativity, wherein Poincaré established the full covariance of the Maxwell-Lorentz equations under the scale-extended Poincaré group and Einstein explained the Lorentz transformation using his assumption that the one-way speed of light in vacuo is constant and the same for all inertial observers (Einstein’s second postulate), attempts were made to get at the Lorentz transformations from basic properties of space and time but avoiding Einstein’s second postulate. Various such approaches usually involve general consequences of the relativity principle, such as a group structure to the set of all admissible inertial transformations and also assumptions about causality and/or homogeneity of space-time combined with isotropy of space. The first such attempt is usually attributed to von Ignatowsky in 1911. It was followed shortly thereafter by a paper of Frank and Rothe published in the same year. Since then, papers have continued to be written on the subject even up to the present. We elaborate on some of the results of such papers paying special attention to a 1968 paper of Bacri and Lévy-Leblond where possible kinematical groups include the de Sitter and anti-de Sitter groups and lead to special relativity in de Sitter and anti-de Sitter spaces.","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"460 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}