费米子和玻色子代数和相关狄拉克算子中的单元豪对偶性

Guner Muarem
{"title":"费米子和玻色子代数和相关狄拉克算子中的单元豪对偶性","authors":"Guner Muarem","doi":"10.21468/scipostphysproc.14.038","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper we use the canonical complex structure <jats:inline-formula><jats:alternatives><jats:tex-math>\\mathbb{J}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>𝕁</mml:mi></mml:math></jats:alternatives></jats:inline-formula> on <jats:inline-formula><jats:alternatives><jats:tex-math>\\mathbb{R}^{2n}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math></jats:alternatives></jats:inline-formula> to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra <jats:inline-formula><jats:alternatives><jats:tex-math>\\mathfrak{su}(1,2)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> which leads to the Howe dual pair <jats:inline-formula><jats:alternatives><jats:tex-math>(U(n),\\mathfrak{su}(1,2))</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>U</mml:mi><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"true\" form=\"prefix\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow><mml:mo stretchy=\"true\" form=\"postfix\">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>.</jats:p>","PeriodicalId":355998,"journal":{"name":"SciPost Physics Proceedings","volume":"32 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unitary Howe dualities in fermionic and bosonic algebras and related Dirac operators\",\"authors\":\"Guner Muarem\",\"doi\":\"10.21468/scipostphysproc.14.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper we use the canonical complex structure <jats:inline-formula><jats:alternatives><jats:tex-math>\\\\mathbb{J}</jats:tex-math><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mml:mi>𝕁</mml:mi></mml:math></jats:alternatives></jats:inline-formula> on <jats:inline-formula><jats:alternatives><jats:tex-math>\\\\mathbb{R}^{2n}</jats:tex-math><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mml:msup><mml:mi>ℝ</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math></jats:alternatives></jats:inline-formula> to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra <jats:inline-formula><jats:alternatives><jats:tex-math>\\\\mathfrak{su}(1,2)</jats:tex-math><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mml:mrow><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\\\"true\\\" form=\\\"prefix\\\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\\\"true\\\" form=\\\"postfix\\\">)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> which leads to the Howe dual pair <jats:inline-formula><jats:alternatives><jats:tex-math>(U(n),\\\\mathfrak{su}(1,2))</jats:tex-math><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mml:mrow><mml:mo stretchy=\\\"true\\\" form=\\\"prefix\\\">(</mml:mo><mml:mi>U</mml:mi><mml:mrow><mml:mo stretchy=\\\"true\\\" form=\\\"prefix\\\">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy=\\\"true\\\" form=\\\"postfix\\\">)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mi>𝔰</mml:mi><mml:mi>𝔲</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\\\"true\\\" form=\\\"prefix\\\">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\\\"true\\\" form=\\\"postfix\\\">)</mml:mo></mml:mrow><mml:mo stretchy=\\\"true\\\" form=\\\"postfix\\\">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>.</jats:p>\",\"PeriodicalId\":355998,\"journal\":{\"name\":\"SciPost Physics Proceedings\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphysproc.14.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/scipostphysproc.14.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用 \mathbb{R}^{2n}ℝ2n 上的典型复结构 \mathbb{J}𝕁 来引入交点狄拉克算子的扭转。这可以解释为赫米流形上狄拉克算子的玻色类似。此外,我们证明了这些狄拉克算子的代数与李代数 \mathfrak{su}(1,2)𝔰𝔲(1,2) 同构,这导致了豪对偶 (U(n),\mathfrak{su}(1,2))(U(n),𝔰𝔲(1,2)) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unitary Howe dualities in fermionic and bosonic algebras and related Dirac operators
In this paper we use the canonical complex structure \mathbb{J}𝕁 on \mathbb{R}^{2n}2n to introduce a twist of the symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac operators is isomorphic to the Lie algebra \mathfrak{su}(1,2)𝔰𝔲(1,2) which leads to the Howe dual pair (U(n),\mathfrak{su}(1,2))(U(n),𝔰𝔲(1,2)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信