E. Chiodo, Fabio De De Angelis, B. Diban, Giovanni Mazzanti
{"title":"Bayes Inference of Structural Safety under Extreme Wind Loads Based upon a Peak-Over-Threshold Process of Exceedances","authors":"E. Chiodo, Fabio De De Angelis, B. Diban, Giovanni Mazzanti","doi":"10.3390/mca28060111","DOIUrl":"https://doi.org/10.3390/mca28060111","url":null,"abstract":"In the present paper, the process of estimating the important statistical properties of extreme wind loads on structures is investigated by considering the effect of large variability. In fact, for the safety design and operating conditions of structures such as the ones characterizing tall buildings, wind towers, and offshore structures, it is of interest to obtain the best possible estimates of extreme wind loads on structures, the recurrence frequency, the return periods, and other stochastic properties, given the available statistical data. In this paper, a Bayes estimation of extreme load values is investigated in the framework of structural safety analysis. The evaluation of extreme values of the wind loads on the structures is performed via a combined employment of a Poisson process model for the peak-over-threshold characterization and an adequate characterization of the parent distribution which generates the base wind load values. In particular, the present investigation is based upon a key parameter for assessing the safety of structures, i.e., a proper safety index referred to a given extreme value of wind speed. The attention is focused upon the estimation process, for which the presented procedure proposes an adequate Bayesian approach based upon prior assumptions regarding (1) the Weibull probability that wind speed is higher than a prefixed threshold value, and (2) the frequency of the Poisson process of gusts. In the last part of the investigation, a large set of numerical simulations is analyzed to evaluate the feasibility and efficiency of the above estimation method and with the objective to analyze and compare the presented approach with the classical Maximum Likelihood method. Moreover, the robustness of the proposed Bayes estimation is also investigated with successful results, both with respect to the assumed parameter prior distributions and with respect to the Weibull distribution of the wind speed values.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"312 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139204195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explicit Integrating Factor Runge–Kutta Method for the Extended Fisher–Kolmogorov Equation","authors":"Yanan Wang, Shuying Zhai","doi":"10.3390/mca28060110","DOIUrl":"https://doi.org/10.3390/mca28060110","url":null,"abstract":"The extended Fisher–Kolmogorov (EFK) equation is an important model for phase transitions and bistable phenomena. This paper presents some fast explicit numerical schemes based on the integrating factor Runge–Kutta method and the Fourier spectral method to solve the EFK equation. The discrete global convergence of these new schemes is analyzed rigorously. Three numerical examples are presented to verify the theoretical analysis and the efficiency of the proposed schemes.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"8 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139249645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic Consideration of Rayleigh Waves on a Coated Orthorhombic Elastic Half-Space Reinforced Using an Elastic Winkler Foundation","authors":"Ali M. Mubaraki","doi":"10.3390/mca28060109","DOIUrl":"https://doi.org/10.3390/mca28060109","url":null,"abstract":"This article derives approximate formulations for Rayleigh waves on a coated orthorhombic elastic half-space with a prescribed vertical load acting as an elastic Winkler foundation. In addition, perfect continuity conditions are imposed between the coating layer and the substrate, while suitable decaying conditions are slated along the infinite depth of the half-space. The effect of the thin layer is modeled using appropriate effective boundary conditions within the long-wave limit. By applying the Radon transform and using the perturbation method, the derived model successfully captures the physical characteristics of elastic surface waves in coated half-spaces. The model consists of a pesudo-static elliptic equation decaying over the interior of the half-space and a singularly perturbed hyperbolic equation with a pseudo-differential operator. The pseudo-differential equation gives the approximate dispersion of surface waves on the coated half-space structure and is analyzed numerically at the end.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"36 9-10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139275035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Tariq, Hijaz Ahmad, Asif Ali Shaikh, Sotiris K. Ntouyas, Evren Hınçal, Sania Qureshi
{"title":"Fractional Hermite–Hadamard-Type Inequalities for Differentiable Preinvex Mappings and Applications to Modified Bessel and q-Digamma Functions","authors":"Muhammad Tariq, Hijaz Ahmad, Asif Ali Shaikh, Sotiris K. Ntouyas, Evren Hınçal, Sania Qureshi","doi":"10.3390/mca28060108","DOIUrl":"https://doi.org/10.3390/mca28060108","url":null,"abstract":"The theory of convexity pertaining to fractional calculus is a well-established concept that has attracted significant attention in mathematics and various scientific disciplines for over a century. In the realm of applied mathematics, convexity, particularly in relation to fractional analysis, finds extensive and remarkable applications. In this manuscript, we establish new fractional identities. Employing these identities, some extensions of the fractional H-H type inequality via generalized preinvexities are explored. Finally, we discuss some applications to the q-digamma and Bessel functions via the established results. We believe that the methodologies and approaches presented in this work will intrigue and spark the researcher’s interest even more.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":" 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mary A. Familusi, Sebastian Skatulla, Jagir R. Hussan, Olukayode O. Aremu, Daniel Mutithu, Evelyn N. Lumngwena, Freedom N. Gumedze, Ntobeko A. B. Ntusi
{"title":"Model-Based Assessment of Elastic Material Parameters in Rheumatic Heart Disease Patients and Healthy Subjects","authors":"Mary A. Familusi, Sebastian Skatulla, Jagir R. Hussan, Olukayode O. Aremu, Daniel Mutithu, Evelyn N. Lumngwena, Freedom N. Gumedze, Ntobeko A. B. Ntusi","doi":"10.3390/mca28060106","DOIUrl":"https://doi.org/10.3390/mca28060106","url":null,"abstract":"Non-invasive measurements are important for the development of new treatments for heart failure, which is one of the leading causes of death worldwide. This study aimed to develop realistic subject-specific computational models of human biventricles using clinical data. Three-dimensional finite element models of the human ventricles were created using cardiovascular magnetic resonance images of rheumatic heart disease (RHD) patients and healthy subjects. The material parameter optimization uses inverse modeling based on the finite element method combined with the Levenberg–Marquardt method (LVM) by targeting subject-specific hemodynamics. The study of elastic myocardial parameters between healthy subjects and RHD patients showed an elevated stiffness in diseased hearts. In particular, the anisotropic material behavior of the healthy and diseased cardiac tissue significantly differed from one another. Furthermore, as the LVEF decreased, the stiffness and its orientation-dependent parameters increased. The simulation-derived LV myocardial circumferential and longitudinal stresses were negatively associated with the LVEF. The sensitivity analysis result demonstrated that the observed significant difference between the elastic material parameters of diseased and healthy myocardium was not exclusively attributable to an increased LVEDP in the diseased heart. These results could be applied to future computational studies for developing heart failure treatment.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"49 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135221372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia Melin, Daniela Sánchez, Martha Pulido, Oscar Castillo
{"title":"Comparative Study of Metaheuristic Optimization of Convolutional Neural Networks Applied to Face Mask Classification","authors":"Patricia Melin, Daniela Sánchez, Martha Pulido, Oscar Castillo","doi":"10.3390/mca28060107","DOIUrl":"https://doi.org/10.3390/mca28060107","url":null,"abstract":"The preventive measures taken to curb the spread of COVID-19 have emphasized the importance of wearing face masks to prevent potential infection with serious diseases during daily activities or for medical professionals working in hospitals. Due to the mandatory use of face masks, various methods employing artificial intelligence and deep learning have emerged to detect whether individuals are wearing masks. In this paper, we utilized convolutional neural networks (CNNs) to classify the use of face masks into three categories: no mask, incorrect mask, and proper mask. Establishing the appropriate CNN architecture can be a demanding task. This study compares four swarm intelligent metaheuristics: particle swarm optimization (PSO), grey wolf optimizer (GWO), bat algorithm (BA), and whale optimization algorithm (WOA). The CNN architecture design involves determining the essential hyperparameters of the CNNs. The results indicate the effectiveness of the PSO and BA in achieving an accuracy of 100% when using 10% of the images for testing. Meanwhile, when 90% of the images were used for testing, the results were as follows: PSO 97.15%, WOA 97.14%, BA 97.23%, and GWO 97.18%. These statistically significant differences demonstrate that the BA allows better results than the other metaheuristics analyzed in this study.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"24 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135325415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta M. Sánchez-García, Gonzalo Barderas, Pilar Romero
{"title":"Modelization of Low-Cost Maneuvers for an Areostationary Preliminary Mission Design","authors":"Marta M. Sánchez-García, Gonzalo Barderas, Pilar Romero","doi":"10.3390/mca28060105","DOIUrl":"https://doi.org/10.3390/mca28060105","url":null,"abstract":"The aim of this paper is to analyze the determination of interplanetary trajectories from Earth to Mars to evaluate the cost of the required impulse magnitudes for an areostationary orbiter mission design. Such analysis is first conducted by solving the Lambert orbital boundary value problem and studying the launch and arrival conditions for various date combinations. Then, genetic algorithms are applied to investigate the minimum-energy transfer orbit. Afterwards, an iterative procedure is used to determine the heliocentric elliptic transfer orbit that matches at the entry point of Mars’s sphere of influence with an areocentric hyperbolic orbit imposing specific conditions on inclination and periapsis radius. Finally, the maneuvers needed to obtain an areostationary orbit are numerically computed for different objective condition values at the Mars entry point to evaluate an areostationary preliminary mission cost for further study and characterization. Results show that, for the dates of the minimum-energy Earth–Mars transfer trajectory, a low value for the maneuvers to achieve an areostationary orbit is obtained for an arrival hyperbola with the minimum possible inclination and a capture into an elliptical trajectory with a low periapsis radius and an apoapsis at the stationary orbit. For a 2026 mission with a TOF of 304 for the minimum-energy Earth–Mars transfer trajectory, for a capture with a periapsis of 300 km above the Mars surface the value achieved will be 2.083 km/s.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"8 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136318123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Observer-Based State Estimation for Recurrent Neural Networks: An Output-Predicting and LPV-Based Approach","authors":"Wanlin Wang, Jinxiong Chen, Zhenkun Huang","doi":"10.3390/mca28060104","DOIUrl":"https://doi.org/10.3390/mca28060104","url":null,"abstract":"An innovative cascade predictor is presented in this study to forecast the state of recurrent neural networks (RNNs) with delayed output. This cascade predictor is a chain-structured observer, as opposed to the conventional single observer, and is made up of several sub-observers that individually estimate the state of the neurons at various periods. This new cascade predictor is more useful than the conventional single observer in predicting neural network states when the output delay is arbitrarily large but known. In contrast to examining the stability of error systems solely employing the Lyapunov–Krasovskii functional (LKF), several new global asymptotic stability standards are obtained by combining the application of the Linear Parameter Varying (LPV) approach, LKF and convex principle. Finally, a series of numerical simulations verify the efficacy of the obtained results.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"27 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135111360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-Driven Framework for Uncovering Hidden Control Strategies in Evolutionary Analysis","authors":"Nourddine Azzaoui, Tomoko Matsui, Daisuke Murakami","doi":"10.3390/mca28050103","DOIUrl":"https://doi.org/10.3390/mca28050103","url":null,"abstract":"We devised a data-driven framework for uncovering hidden control strategies used by an evolutionary system described by an evolutionary probability distribution. This innovative framework enables deciphering of the concealed mechanisms that contribute to the progression or mitigation of such situations as the spread of COVID-19. Novel algorithms are used to estimate the optimal control in tandem with the parameters for evolution in general dynamical systems, thereby extending the concept of model predictive control. This marks a significant departure from conventional control methods, which require knowledge of the system to manipulate its evolution and of the controller’s strategy or parameters. We use a generalized additive model, supplemented by extensive statistical testing, to identify a set of predictor covariates closely linked to the control. Using real-world COVID-19 data, we delineate the descriptive behaviors of the COVID-19 epidemics in five prefectures in Japan and nine countries. We compare these nine countries and group them on the basis of shared profiles, providing valuable insights into their pandemic responses. Our findings underscore the potential of our framework as a powerful tool for understanding and managing complex evolutionary processes.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135569356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applying Physics-Informed Neural Networks to Solve Navier–Stokes Equations for Laminar Flow around a Particle","authors":"Beichao Hu, Dwayne McDaniel","doi":"10.3390/mca28050102","DOIUrl":"https://doi.org/10.3390/mca28050102","url":null,"abstract":"In recent years, Physics-Informed Neural Networks (PINNs) have drawn great interest among researchers as a tool to solve computational physics problems. Unlike conventional neural networks, which are black-box models that “blindly” establish a correlation between input and output variables using a large quantity of labeled data, PINNs directly embed physical laws (primarily partial differential equations) within the loss function of neural networks. By minimizing the loss function, this approach allows the output variables to automatically satisfy physical equations without the need for labeled data. The Navier–Stokes equation is one of the most classic governing equations in thermal fluid engineering. This study constructs a PINN to solve the Navier–Stokes equations for a 2D incompressible laminar flow problem. Flows passing around a 2D circular particle are chosen as the benchmark case, and an elliptical particle is also examined to enrich the research. The velocity and pressure fields are predicted by the PINNs, and the results are compared with those derived from Computational Fluid Dynamics (CFD). Additionally, the particle drag force coefficient is calculated to quantify the discrepancy in the results of the PINNs as compared to CFD outcomes. The drag coefficient maintained an error within 10% across all test scenarios.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135855296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}