Modelization of Low-Cost Maneuvers for an Areostationary Preliminary Mission Design

Marta M. Sánchez-García, Gonzalo Barderas, Pilar Romero
{"title":"Modelization of Low-Cost Maneuvers for an Areostationary Preliminary Mission Design","authors":"Marta M. Sánchez-García, Gonzalo Barderas, Pilar Romero","doi":"10.3390/mca28060105","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to analyze the determination of interplanetary trajectories from Earth to Mars to evaluate the cost of the required impulse magnitudes for an areostationary orbiter mission design. Such analysis is first conducted by solving the Lambert orbital boundary value problem and studying the launch and arrival conditions for various date combinations. Then, genetic algorithms are applied to investigate the minimum-energy transfer orbit. Afterwards, an iterative procedure is used to determine the heliocentric elliptic transfer orbit that matches at the entry point of Mars’s sphere of influence with an areocentric hyperbolic orbit imposing specific conditions on inclination and periapsis radius. Finally, the maneuvers needed to obtain an areostationary orbit are numerically computed for different objective condition values at the Mars entry point to evaluate an areostationary preliminary mission cost for further study and characterization. Results show that, for the dates of the minimum-energy Earth–Mars transfer trajectory, a low value for the maneuvers to achieve an areostationary orbit is obtained for an arrival hyperbola with the minimum possible inclination and a capture into an elliptical trajectory with a low periapsis radius and an apoapsis at the stationary orbit. For a 2026 mission with a TOF of 304 for the minimum-energy Earth–Mars transfer trajectory, for a capture with a periapsis of 300 km above the Mars surface the value achieved will be 2.083 km/s.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"8 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28060105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to analyze the determination of interplanetary trajectories from Earth to Mars to evaluate the cost of the required impulse magnitudes for an areostationary orbiter mission design. Such analysis is first conducted by solving the Lambert orbital boundary value problem and studying the launch and arrival conditions for various date combinations. Then, genetic algorithms are applied to investigate the minimum-energy transfer orbit. Afterwards, an iterative procedure is used to determine the heliocentric elliptic transfer orbit that matches at the entry point of Mars’s sphere of influence with an areocentric hyperbolic orbit imposing specific conditions on inclination and periapsis radius. Finally, the maneuvers needed to obtain an areostationary orbit are numerically computed for different objective condition values at the Mars entry point to evaluate an areostationary preliminary mission cost for further study and characterization. Results show that, for the dates of the minimum-energy Earth–Mars transfer trajectory, a low value for the maneuvers to achieve an areostationary orbit is obtained for an arrival hyperbola with the minimum possible inclination and a capture into an elliptical trajectory with a low periapsis radius and an apoapsis at the stationary orbit. For a 2026 mission with a TOF of 304 for the minimum-energy Earth–Mars transfer trajectory, for a capture with a periapsis of 300 km above the Mars surface the value achieved will be 2.083 km/s.
非静止初始任务设计的低成本机动建模
本文的目的是分析从地球到火星的行星际轨迹的确定,以评估非静止轨道器任务设计所需脉冲幅度的成本。首先通过求解Lambert轨道边值问题,研究各种数据组合的发射和到达条件进行分析。然后,应用遗传算法求解最小能量转移轨道。然后,使用迭代程序确定在火星影响范围入口处与对倾角和圆心半径施加特定条件的区域中心双曲轨道相匹配的日心椭圆转移轨道。最后,针对火星入口点不同的客观条件值,对获得非静止轨道所需的机动进行了数值计算,以评估非静止初步任务的成本,为进一步研究和表征提供依据。结果表明,对于最小能量地-火星转移轨道的数据,对于最小可能倾角的到达双曲线和捕获到低近日点半径和远日点的椭圆轨道,实现非静止轨道的机动值较低。对于2026年的任务,对于最小能量的地球-火星转移轨道,TOF为304,对于在火星表面上方300公里处的捕获,实现的值将为2.083公里/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信