{"title":"Research on the mechanical fault diagnosis method based on sound signal and IEMD-DDCNN","authors":"Haoning Pu, Zhan Wen, Xiulan Sun, Lemei Han, Yanhe Na, Hantao Liu, Wenzao Li","doi":"10.1108/ijicc-09-2022-0253","DOIUrl":"https://doi.org/10.1108/ijicc-09-2022-0253","url":null,"abstract":"PurposeThe purpose of this paper is to provide a shorter time cost, high-accuracy fault diagnosis method for water pumps. Water pumps are widely used in industrial equipment and their fault diagnosis is gaining increasing attention. Considering the time-consuming empirical mode decomposition (EMD) method and the more efficient classification provided by the convolutional neural network (CNN) method, a novel classification method based on incomplete empirical mode decomposition (IEMD) and dual-input dual-channel convolutional neural network (DDCNN) composite data is proposed and applied to the fault diagnosis of water pumps.Design/methodology/approachThis paper proposes a data preprocessing method using IEMD combined with mel-frequency cepstrum coefficient (MFCC) and a neural network model of DDCNN. First, the sound signal is decomposed by IEMD to get numerous intrinsic mode functions (IMFs) and a residual (RES). Several IMFs and one RES are then extracted by MFCC features. Ultimately, the obtained features are split into two channels (IMFs one channel; RES one channel) and input into DDCNN.FindingsThe Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection (MIMII dataset) is used to verify the practicability of the method. Experimental results show that decomposition into an IMF is optimal when taking into account the real-time and accuracy of the diagnosis. Compared with EMD, 51.52% of data preprocessing time, 67.25% of network training time and 63.7% of test time are saved and also improve accuracy.Research limitations/implicationsThis method can achieve higher accuracy in fault diagnosis with a shorter time cost. Therefore, the fault diagnosis of equipment based on the sound signal in the factory has certain feasibility and research importance.Originality/valueThis method provides a feasible method for mechanical fault diagnosis based on sound signals in industrial applications.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131372652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative analysis of text representation, classification and clustering methods over real project proposals","authors":"Meltem Aksoy, S. Ugurlu, M. Amasyali","doi":"10.1108/ijicc-11-2022-0289","DOIUrl":"https://doi.org/10.1108/ijicc-11-2022-0289","url":null,"abstract":"PurposeWhen a large number of project proposals are evaluated to allocate available funds, grouping them based on their similarities is beneficial. Current approaches to group proposals are primarily based on manual matching of similar topics, discipline areas and keywords declared by project applicants. When the number of proposals increases, this task becomes complex and requires excessive time. This paper aims to demonstrate how to effectively use the rich information in the titles and abstracts of Turkish project proposals to group them automatically.Design/methodology/approachThis study proposes a model that effectively groups Turkish project proposals by combining word embedding, clustering and classification techniques. The proposed model uses FastText, BERT and term frequency/inverse document frequency (TF/IDF) word-embedding techniques to extract terms from the titles and abstracts of project proposals in Turkish. The extracted terms were grouped using both the clustering and classification techniques. Natural groups contained within the corpus were discovered using k-means, k-means++, k-medoids and agglomerative clustering algorithms. Additionally, this study employs classification approaches to predict the target class for each document in the corpus. To classify project proposals, various classifiers, including k-nearest neighbors (KNN), support vector machines (SVM), artificial neural networks (ANN), classification and regression trees (CART) and random forest (RF), are used. Empirical experiments were conducted to validate the effectiveness of the proposed method by using real data from the Istanbul Development Agency.FindingsThe results show that the generated word embeddings can effectively represent proposal texts as vectors, and can be used as inputs for clustering or classification algorithms. Using clustering algorithms, the document corpus is divided into five groups. In addition, the results demonstrate that the proposals can easily be categorized into predefined categories using classification algorithms. SVM-Linear achieved the highest prediction accuracy (89.2%) with the FastText word embedding method. A comparison of manual grouping with automatic classification and clustering results revealed that both classification and clustering techniques have a high success rate.Research limitations/implicationsThe proposed model automatically benefits from the rich information in project proposals and significantly reduces numerous time-consuming tasks that managers must perform manually. Thus, it eliminates the drawbacks of the current manual methods and yields significantly more accurate results. In the future, additional experiments should be conducted to validate the proposed method using data from other funding organizations.Originality/valueThis study presents the application of word embedding methods to effectively use the rich information in the titles and abstracts of Turkish project proposals. Existing research studies f","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131383304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Risk management research in East Asia: a bibliometric analysis","authors":"Lili Zhang, Jie Ling, Mingwei Lin","doi":"10.1108/ijicc-10-2022-0276","DOIUrl":"https://doi.org/10.1108/ijicc-10-2022-0276","url":null,"abstract":"PurposeThe aim of this paper is to present a comprehensive analysis of risk management in East Asia from 1998 to 2021 by using bibliometric methods and tools to explore research trends, hotspots, and directions for future research.Design/methodology/approachThe data source for this paper is the Web of Science Core Collection, and 7,154 publications and related information have been derived. We use recognized bibliometric indicators to evaluate publications and visually analyze them through scientific mapping tools (VOS Viewer and CiteSpace).FindingsThe analysis results show that China is the most productive and influential country/region. East Asia countries have strong cooperation with each other and also have cooperation with other countries. The study shows that risk management has been involved in various fields such as credit, supply chain, health emergency and disaster especially in the background of COVID-19. We also found that machine learning, especially deep learning, has been playing an increasingly important role in risk management due to its excellent performance.Originality/valueThis paper focuses on studying risk management in East Asia, exploring its publication's fundamental information, citation and cooperation networks, hotspots, and research trends. It provides some reference value for scholars who are interested or further research in this field.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"167 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114185490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Choquet integral-based TODIM method for q-rung trapezoidal fuzzy numbers and its application in group decision-making","authors":"Benting Wan, Juelin Huang","doi":"10.1108/ijicc-10-2022-0267","DOIUrl":"https://doi.org/10.1108/ijicc-10-2022-0267","url":null,"abstract":"PurposeThe purpose of this paper is to develop a multi-attribute group decision-making (MAGDM) method under the q-rung orthopair trapezoidal fuzzy environment, which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral (q-ROTrFACI) and employ TODIM (an acronym in Portuguese of Interactive and Multi-criteria Decision Making) to consider the risk psychology of decision-makers, to determine the optimal ranking of alternatives.Design/methodology/approachIn MAGDM, q-rung orthopair trapezoidal fuzzy numbers (q-ROTrFNs) are efficient to indicate the quantitative vagueness of decision-makers. The q-ROTrFACI operator is defined and some properties are proved. Then, a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function. Based on the above, a Choquet integral-based TODIM (CI-TODIM) method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.FindingsThe paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria. Then, an approach is proposed to determine the center point of q--ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed. Furthermore, CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context. The illustration example of business models' solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.Originality/valueThe paper develops a novel CI-TODIM method that effectively solves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers, which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121738486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intuitionistic fuzzy DEMATEL for developing causal relationship of water security","authors":"L. Abdullah, Herrini Mohd Pouzi, N. A. Awang","doi":"10.1108/ijicc-11-2022-0296","DOIUrl":"https://doi.org/10.1108/ijicc-11-2022-0296","url":null,"abstract":"PurposeThis study aims to develop a cause-effect relationship between criteria that contribute to water security using the Intuitionistic Fuzzy-Decision-Making Trial and Evaluation Laboratory (IF-DEMATEL) method. Differently from the typical DEMATEL which utilizes crisp numbers, this modification introduces intuitionistic fuzzy numbers (IFNs) to enhance judgments in a group decision-making environment. In particular, the linguistic variables used in IF-DEMATEL are defined using the concept of three-tuple of IFNs.Design/methodology/approachData with the linguistic variable “influence” were collected from a group of experts in water security via personal unstructured interviews. Seven water security criteria are considered in this study. Computational software was employed to execute the computational procedures of the IF-DEMATEL method. It is anticipated that by taking into account the hesitation degree of IFNs will reflect the scenario in real life, which could lead to precise decision-making.FindingsThe results show that “Over-Abstraction”, “Saltwater Intrusion” and “Limited Infrastructures” are the cause criteria that contribute to water security. In addition, the relationship map of influence shows that “Water Pollution” and “Rapid Urbanization” are the most vulnerable criteria as these two criteria are most easily affected by other criteria in a unidirectional relation.Practical implicationsIt is anticipated that these findings will serve as useful references for water security management and policymakers.Originality/valueThe present study makes a noteworthy contribution to the modification of DEMATEL where three-tuple of intuitionistic fuzzy numbers are considered in the computations. The present study also provides additional evidence with respect to factors that contribute to water security.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129469001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flame smoke detection algorithm based on YOLOv5 in petrochemical plant","authors":"Yueting Yang, Shaolin Hu, Ye Ke, Runguan Zhou","doi":"10.1108/ijicc-11-2022-0291","DOIUrl":"https://doi.org/10.1108/ijicc-11-2022-0291","url":null,"abstract":"PurposeFire smoke detection in petrochemical plant can prevent fire and ensure production safety and life safety. The purpose of this paper is to solve the problem of missed detection and false detection in flame smoke detection under complex factory background.Design/methodology/approachThis paper presents a flame smoke detection algorithm based on YOLOv5. The target regression loss function (CIoU) is used to improve the missed detection and false detection in target detection and improve the model detection performance. The improved activation function avoids gradient disappearance to maintain high real-time performance of the algorithm. Data enhancement technology is used to enhance the ability of the network to extract features and improve the accuracy of the model for small target detection.FindingsBased on the actual situation of flame smoke, the loss function and activation function of YOLOv5 model are improved. Based on the improved YOLOv5 model, a flame smoke detection algorithm with generalization performance is established. The improved model is compared with SSD and YOLOv4-tiny. The accuracy of the improved YOLOv5 model can reach 99.5%, which achieves a more accurate detection effect on flame smoke. The improved network model is superior to the existing methods in running time and accuracy.Originality/valueAiming at the actual particularity of flame smoke detection, an improved flame smoke detection network model based on YOLOv5 is established. The purpose of optimizing the model is achieved by improving the loss function, and the activation function with stronger nonlinear ability is combined to avoid over-fitting of the network. This method is helpful to improve the problems of missed detection and false detection in flame smoke detection and can be further extended to pedestrian target detection and vehicle running recognition.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125021084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system","authors":"Zhixiang Chen","doi":"10.1108/ijicc-07-2022-0197","DOIUrl":"https://doi.org/10.1108/ijicc-07-2022-0197","url":null,"abstract":"PurposeThe purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues.Design/methodology/approachUtilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case.FindingsExperiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues.Originality/valueThe innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115104514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel residual shrinkage block-based convolutional neural network for improving the recognition of motor imagery EEG signals","authors":"Jinchao Huang","doi":"10.1108/ijicc-05-2022-0130","DOIUrl":"https://doi.org/10.1108/ijicc-05-2022-0130","url":null,"abstract":"PurposeRecently, the convolutional neural network (ConvNet) has a wide application in the classification of motor imagery EEG signals. However, the low signal-to-noise electroencephalogram (EEG) signals are collected under the interference of noises. However, the conventional ConvNet model cannot directly solve this problem. This study aims to discuss the aforementioned issues.Design/methodology/approachTo solve this problem, this paper adopted a novel residual shrinkage block (RSB) to construct the ConvNet model (RSBConvNet). During the feature extraction from EEG signals, the proposed RSBConvNet prevented the noise component in EEG signals, and improved the classification accuracy of motor imagery. In the construction of RSBConvNet, the author applied the soft thresholding strategy to prevent the non-related motor imagery features in EEG signals. The soft thresholding was inserted into the residual block (RB), and the suitable threshold for the current EEG signals distribution can be learned by minimizing the loss function. Therefore, during the feature extraction of motor imagery, the proposed RSBConvNet de-noised the EEG signals and improved the discriminative of classification features.FindingsComparative experiments and ablation studies were done on two public benchmark datasets. Compared with conventional ConvNet models, the proposed RSBConvNet model has obvious improvements in motor imagery classification accuracy and Kappa coefficient. Ablation studies have also shown the de-noised abilities of the RSBConvNet model. Moreover, different parameters and computational methods of the RSBConvNet model have been tested on the classification of motor imagery.Originality/valueBased on the experimental results, the RSBConvNet constructed in this paper has an excellent recognition accuracy of MI-BCI, which can be used for further applications for the online MI-BCI.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130875923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An approach based on deep learning for Indian sign language translation","authors":"Kinjal Mistree, D. Thakor, Brijesh Bhatt","doi":"10.1108/ijicc-08-2022-0227","DOIUrl":"https://doi.org/10.1108/ijicc-08-2022-0227","url":null,"abstract":"PurposeAccording to the Indian Sign Language Research and Training Centre (ISLRTC), India has approximately 300 certified human interpreters to help people with hearing loss. This paper aims to address the issue of Indian Sign Language (ISL) sentence recognition and translation into semantically equivalent English text in a signer-independent mode.Design/methodology/approachThis study presents an approach that translates ISL sentences into English text using the MobileNetV2 model and Neural Machine Translation (NMT). The authors have created an ISL corpus from the Brown corpus using ISL grammar rules to perform machine translation. The authors’ approach converts ISL videos of the newly created dataset into ISL gloss sequences using the MobileNetV2 model and the recognized ISL gloss sequence is then fed to a machine translation module that generates an English sentence for each ISL sentence.FindingsAs per the experimental results, pretrained MobileNetV2 model was proven the best-suited model for the recognition of ISL sentences and NMT provided better results than Statistical Machine Translation (SMT) to convert ISL text into English text. The automatic and human evaluation of the proposed approach yielded accuracies of 83.3 and 86.1%, respectively.Research limitations/implicationsIt can be seen that the neural machine translation systems produced translations with repetitions of other translated words, strange translations when the total number of words per sentence is increased and one or more unexpected terms that had no relation to the source text on occasion. The most common type of error is the mistranslation of places, numbers and dates. Although this has little effect on the overall structure of the translated sentence, it indicates that the embedding learned for these few words could be improved.Originality/valueSign language recognition and translation is a crucial step toward improving communication between the deaf and the rest of society. Because of the shortage of human interpreters, an alternative approach is desired to help people achieve smooth communication with the Deaf. To motivate research in this field, the authors generated an ISL corpus of 13,720 sentences and a video dataset of 47,880 ISL videos. As there is no public dataset available for ISl videos incorporating signs released by ISLRTC, the authors created a new video dataset and ISL corpus.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"350 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134299608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collaborative slot secondary allocation based on flight wave operation","authors":"Kejia Chen, Jintao Chen, Lixi Yang, Xiaoqian Yang","doi":"10.1108/ijicc-06-2022-0172","DOIUrl":"https://doi.org/10.1108/ijicc-06-2022-0172","url":null,"abstract":"PurposeFlights are often delayed owing to emergencies. This paper proposes a cooperative slot secondary assignment (CSSA) model based on a collaborative decision-making (CDM) mechanism, and the operation mode of flight waves designs an improved intelligent algorithm to solve the optimal flight plan and minimize the total delay of passenger time.Design/methodology/approachTaking passenger delays, transfer delays and flight cancellation delays into account comprehensively, the total delay time is minimized as the objective function. The model is verified by a linear solver and compared with the first come first service (FCFS) method to prove the effectiveness of the method. An improved adaptive partheno-genetic algorithm (IAPGA) using hierarchical serial number coding was designed, combining elite and roulette strategies to find pareto solutions.FindingsComparing and analyzing the experimental results of various scale examples, the optimization model in this paper is greatly optimized compared to the FCFS method in terms of total delay time, and the IAPGA algorithm is better than the algorithm before in terms of solution performance and solution set quality.Originality/valueBased on the actual situation, this paper considers the operation mode of flight waves. In addition, the flight plan solved by the model can be guaranteed in terms of feasibility and effectiveness, which can provide airlines with reasonable decision-making opinions when reassigning slot resources.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131173728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}