A Choquet integral-based TODIM method for q-rung trapezoidal fuzzy numbers and its application in group decision-making

Benting Wan, Juelin Huang
{"title":"A Choquet integral-based TODIM method for q-rung trapezoidal fuzzy numbers and its application in group decision-making","authors":"Benting Wan, Juelin Huang","doi":"10.1108/ijicc-10-2022-0267","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to develop a multi-attribute group decision-making (MAGDM) method under the q-rung orthopair trapezoidal fuzzy environment, which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral (q-ROTrFACI) and employ TODIM (an acronym in Portuguese of Interactive and Multi-criteria Decision Making) to consider the risk psychology of decision-makers, to determine the optimal ranking of alternatives.Design/methodology/approachIn MAGDM, q-rung orthopair trapezoidal fuzzy numbers (q-ROTrFNs) are efficient to indicate the quantitative vagueness of decision-makers. The q-ROTrFACI operator is defined and some properties are proved. Then, a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function. Based on the above, a Choquet integral-based TODIM (CI-TODIM) method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.FindingsThe paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria. Then, an approach is proposed to determine the center point of q--ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed. Furthermore, CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context. The illustration example of business models' solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.Originality/valueThe paper develops a novel CI-TODIM method that effectively solves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers, which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.","PeriodicalId":352072,"journal":{"name":"Int. J. Intell. Comput. Cybern.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Comput. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijicc-10-2022-0267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe purpose of this paper is to develop a multi-attribute group decision-making (MAGDM) method under the q-rung orthopair trapezoidal fuzzy environment, which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral (q-ROTrFACI) and employ TODIM (an acronym in Portuguese of Interactive and Multi-criteria Decision Making) to consider the risk psychology of decision-makers, to determine the optimal ranking of alternatives.Design/methodology/approachIn MAGDM, q-rung orthopair trapezoidal fuzzy numbers (q-ROTrFNs) are efficient to indicate the quantitative vagueness of decision-makers. The q-ROTrFACI operator is defined and some properties are proved. Then, a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function. Based on the above, a Choquet integral-based TODIM (CI-TODIM) method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.FindingsThe paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria. Then, an approach is proposed to determine the center point of q--ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed. Furthermore, CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context. The illustration example of business models' solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.Originality/valueThe paper develops a novel CI-TODIM method that effectively solves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers, which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.
基于Choquet积分的q阶梯形模糊数TODIM方法及其在群体决策中的应用
本文的目的是建立q阶正梯形模糊环境下的多属性群体决策(MAGDM)方法,根据提出的q阶正梯形模糊聚集Choquet积分(q-ROTrFACI)计算决策准则之间的相互作用,并采用TODIM (Interactive and Multi-criteria Decision Making)来考虑决策者的风险心理。确定备选方案的最优排序。设计/方法/方法在MAGDM中,q阶正梯形模糊数(q-ROTrFNs)能有效地反映决策者的定量模糊性。定义了q-ROTrFACI算子,并证明了它的一些性质。然后,通过融合q阶正梯形模糊函数的面积和坐标,提出了一种新的相似性度量方法。在此基础上,提出了一种考虑决策者风险心理的基于Choquet积分的TODIM (CI-TODIM)方法,并通过两个案例证明了该方法的优越性。研究了q-ROTrFACI算子有效解决相互依赖准则问题的方法。然后,提出了一种确定q—ROTrFNs中心点的方法,构造了q阶正梯形模糊相似度。在此基础上,基于所提出的q-ROTrFACI算子和q-rung正梯形模糊环境下的相似度,设计了CI-TODIM方法。以商业模式解决方案和高血压健康管理为例,验证了所提方法的有效性和优越性。本文提出了一种新颖的CI-TODIM方法,在充分考虑决策准则优先性和决策者风险偏好的前提下,有效地解决了MAGDM问题,为实际决策提供了指导优势,丰富了决策理论的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信