M. Krainev, M. Kalinin, G. Bazilevskaya, A. Svirzhevskaya, N. Svirzhevsky, Xi Luo, O. Aslam, F. Shen, M. D. Ngobeni, M. Potgieter
{"title":"Manifestation of solar wind corotating interaction regions in GCR intensity variations","authors":"M. Krainev, M. Kalinin, G. Bazilevskaya, A. Svirzhevskaya, N. Svirzhevsky, Xi Luo, O. Aslam, F. Shen, M. D. Ngobeni, M. Potgieter","doi":"10.12737/szf-91202302","DOIUrl":"https://doi.org/10.12737/szf-91202302","url":null,"abstract":"The regions of interaction between solar wind streams of different speed, known as corotating interaction regions, form an almost constantly existing structure of the inner heliosphere. Using observational data on the main characteristics of the heliosphere, important for GCR modulation, and the results of 3D MHD modeling of corotating interaction regions, and Monte Carlo simulation of recurrent GCR variations, we analyze the importance of the corotating interaction regions for longitude-averaged characteristics of the heliosphere and GCR propagation, and possible ways for simulating long-term GCR intensity variations with respect to the corotating interaction regions.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129648737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Chernigovskaya, B. Shpynev, D. Khabituev, K. Ratovsky, A. Belinskaya, A. Stepanov, V. Bychkov, Svetlana D. Grigor’eva, V. Panchenko, J. Mielich
{"title":"Studying the response of the mid-latitude ionosphere of the Northern Hemisphere to magnetic storms in March 2012","authors":"M. Chernigovskaya, B. Shpynev, D. Khabituev, K. Ratovsky, A. Belinskaya, A. Stepanov, V. Bychkov, Svetlana D. Grigor’eva, V. Panchenko, J. Mielich","doi":"10.12737/szf-84202204","DOIUrl":"https://doi.org/10.12737/szf-84202204","url":null,"abstract":"We have studied variations in ionospheric and geomagnetic parameters in the Northern Hemisphere during a series of magnetic storms in March 2012 by analyzing data from the Eurasian mid-latitude ionosonde chain, mid- and high-latitude chains of magnetometers of the global network INTERMAGNET. We have confirmed manifestations of the longitude inhomogeneity of ionospheric effects, which is associated with the irregular structure of the longitudinal variability of geomagnetic field components. The complex physics of the long magnetically disturbed period in March 2012 with switching between positive and negative phases of the ionospheric storm in the same period of the magnetic storm for different spatial regions is emphasized. The change in the effects of the ionospheric storm during this period might have been associated with the superposition in the mid-latitude region of the competing processes affecting the ionospheric ionization whose sources were in the auroral and equatorial ionosphere. We have compared the scenarios for the development of ionospheric disturbances under equinox conditions during magnetic storms in March 2012, October 2016, and March 2015.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124264587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geomagnetic indices ASY-H and SYM-H and their relation to interplanetary parameters","authors":"Georgy Makarov","doi":"10.12737/szf-84202203","DOIUrl":"https://doi.org/10.12737/szf-84202203","url":null,"abstract":"The dependences of the geomagnetic indices SYM-H and ASY-H on interplanetary parameters for the period from 1981 to 2015 according to their daily averages are studied. The study is carried out in two ways: the first — the entire data array is analyzed, the second — the data are divided into 9 activity groups in accordance with the average daily values of the planetary geomagnetic index Ap. A correlation analysis of the indices with the solar wind speed, magnitude, and the north-south component of the interplanetary magnetic field (IMF) has been performed. The search for a relationship between the ASY-H and SYM-H indices and interplanetary parameters turned out to be more successful when considering the entire data array than in the case of splitting the data into groups of magnetic activity. Regression equations relating ASY-H and SYM-H to interplanetary parameters are determined. It has been found that when describing the relationship between the ASY-H and SYM-H indices and the IMF north-south component, it is necessary to take into account the contribution of the IMF modulus.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127097019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The first comparative analysis of meteor echo and sporadic scattering identified by a self-learned neural network in EKB and MAGW ISTP SB RAS radar data","authors":"O. Berngardt","doi":"10.12737/szf-84202206","DOIUrl":"https://doi.org/10.12737/szf-84202206","url":null,"abstract":"The paper describes the current version (v.1.1) of the algorithm for automatic classification of signals received by ISTP SB RAS decameter coherent scatter radars. The algorithm is a self-learning neural network that determines the type of scattered signals from the results of physical modeling of radio wave propagation, using radar data and international reference models of the ionosphere and geomagnetic field. According to MAGW and EKB ISTP SB RAS radar data for 2021, the algorithm self-learns to classify scattered signals into initially unknown classes based on physically interpreted parameters of radio wave propagation and data measured by the radar, with 15 frequently observed out of 20 possible hidden classes identified, 14 of which can be interpreted from a physical point of view. To demonstrate the operation of the algorithm, we present the first statistical analysis of observations of signals assigned by the algorithm to classes which we interpret as scattering by meteor trails and scattering with the sporadic E layer respectively. Through a statistical analysis of EKB and MAGW radar data during 2021–2022, we demonstrate the range-altitude characteristics of signals of these types. A correlation is shown between the hourly average numbers of observations of both classes, as well as between the hourly average line-of-sight velocities obtained for both classes. The results obtained make it possible to interpret these classes as a meteor echo and sporadic scattering respectively, and to use radar data to study the interaction between the neutral atmosphere (studied from meteor scattering data) and the lower ionosphere (studied from observations of sporadic scattering). Currently, this classification algorithm works in ISTP SB RAS radars in automatic mode.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"60 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123226170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Sivtseva, P. Ammosov, G. Gavrilyeva, A. Ammosova, I. Koltovskoi
{"title":"Wave activity of the mesosphere in the planetary wave range according to OH (3-1) emission observations at Maimaga and Tiksi stations for 2015–2020","authors":"V. Sivtseva, P. Ammosov, G. Gavrilyeva, A. Ammosova, I. Koltovskoi","doi":"10.12737/szf-84202209.","DOIUrl":"https://doi.org/10.12737/szf-84202209.","url":null,"abstract":"The article compares the interannual variability of the atmosphere at the OH glow height, which can be associated with planetary wave propagation, at stations spaced in latitude. As a characteristic reflecting planetary wave activity we consider standard deviations of the average overnight temperature σpw from its monthly average after taking into account the seasonal variation. Joint mesopause temperature measurements at high latitudes at two optical stations Maimaga (63.04° N, 129.51° E) and Tiksi (71.58° N, 128.77° E) began in 2015. The stations are equipped with identical Shamrock (Andor) high image quality infrared spectrographs for registration of OH (3-1) in the near infrared region (~1.5 μm). The main result of studying the planetary wave activity during the 5-year period of simultaneous observations is that at Tiksi station it slightly (by about 1–2 K) exceeds that at Maimaga station. In average annual activity fluctuations, the presence of quasi-biennial oscillations is traced.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"192 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124261570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Tolstikov, A. Oinats, M. Artamonov, I. Medvedeva, K. Ratovsky
{"title":"Statistical relation of traveling ionospheric disturbances with neutral wind and disturbances in the stratosphere","authors":"M. Tolstikov, A. Oinats, M. Artamonov, I. Medvedeva, K. Ratovsky","doi":"10.12737/szf-84202208","DOIUrl":"https://doi.org/10.12737/szf-84202208","url":null,"abstract":"Using the representative statistics on traveling ionospheric disturbances (TIDs) obtained by Yekaterinburg and Magadan radars, we have shown that distributions of TIDs and average TID velocities by azimuths and local time agree well with the hypothesis on internal gravity wave (IGW) filtering by the neutral wind. We have examined the influence of significant winter sudden stratospheric warmings on IGW in the ionosphere. A method has been proposed for estimating zonal and meridional neutral wind velocities from MSTID parameters. The method is universal and allows us to estimate the zonal and meridional neutral wind velocities from the statistics on MSTID 2D phase velocity vector obtained by any tool. There is a large amount of data from which MSTID 2D phase velocity vector (as opposed to the 3D phase velocity vector) can be derived, including maps of TEC disturbances and all-sky camera images. This method may therefore be useful in developing and improving neutral wind models.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"63 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114113223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peculiarities of ULF wave characteristics in a multicomponent ionospheric plasma","authors":"Dmitriy Kotik, E. Orlova, V. Yashnov","doi":"10.12737/szf-84202205","DOIUrl":"https://doi.org/10.12737/szf-84202205","url":null,"abstract":"We have examined the properties of low-frequency electromagnetic waves in multicomponent ionospheric plasma in the 1–30 Hz band, using the magnetoionic theory. Complex permittivity tensor components and refractive indices of normal waves (ordinary and extraordinary) were calculated at altitudes from 80 to 750 km. The calculations show that the refractive indices are highly dependent on frequency and height. Polarization of ordinary and extraordinary waves is elliptical over the entire range of the frequencies investigated. The refractive index and the polarization of normal waves are demonstrated to tend to magnetohydrodynamic (MHD) values only at frequencies lower than 1 Hz. The group velocity vector of an extraordinary wave is not directed along the magnetic field, as follows from the MHD approximation, but it lies inside a cone within ±(5–10) degrees, depending on frequency. The group velocity vector of an ordinary wave is practically independent of the angle with the geomagnetic field as in the MHD approximation. The proposed method for calculating the characteristics of normal waves in the ionosphere can be used to study ULF wave propagation from both natural and artificial ionospheric sources, which arise under the action of powerful HF radio waves in the lower and upper ionosphere.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115273395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ionospheric response to the passage of typhoons observed by subionospheric VLF radio signals","authors":"S. Shalimov, M. Solovieva","doi":"10.12737/szf-83202208","DOIUrl":"https://doi.org/10.12737/szf-83202208","url":null,"abstract":"The response of the lower ionosphere to the passage of several dozen typhoons has been studied using a regional network of VLF stations in the Russian Far East. The experimental data presented in all cases clearly demonstrates wavelike disturbances of the subionospheric VLF signal amplitude and phase during the active stage of typhoons crossing radio paths. With the exception of magnetoactive and seismoactive days, this means that the disturbances generated by a typhoon, when propagating into the upper ionosphere, pass through the lower ionosphere, causing corresponding disturbances in the amplitude and phase of the VLF signal. Spectral analysis shows that the range of the wave disturbances detected corresponds to the periods of atmospheric internal gravity waves (IGW). A mechanism of the action of IGWs on the lower ionosphere is proposed which allows us to interpret the VLF signal phase variations observed. According to this mechanism, the action of IGW on the lower ionosphere is caused by polarization fields arising during the wave motion of plasma in the lower part of the F layer. These fields projected along geomagnetic field lines into the lower ionosphere cause the upper wall of the Earth—ionosphere waveguide to rise or fall.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117246853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure of groups of eigenfrequencies in spectra of geomagnetic pulsations in the nightside magnetosphere","authors":"A. Polyakov","doi":"10.12737/szf-83202207","DOIUrl":"https://doi.org/10.12737/szf-83202207","url":null,"abstract":"Using a new method of correlation function for amplitude and phase fluctuations (APCF), records of geomagnetic field component fluctuations (observatories Mondy and Borok) have been processed for a number of hour zones of the nightside magnetosphere. This method is meant to detect groups of equidistant frequencies inside the spectrum of source signal and also to measure a difference between two neighbor frequencies in each of these groups. \u0000The groups of equidistant frequencies in broadband spectra of these fluctuations are shown to depend on eigenfrequencies of the 2D Alfvén wave resonator, just as for dayside fluctuations [Polyakov, 2018]. An empirical relation has been found between a combination of parameters of this resonator and local time. The similarity between structural elements in the final products of processing of Alfvén fluctuation N-S and E-W components for almost all hour zones clearly indicates the reliability of the results of the APCF method in processing any broadband signals.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115520023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Possibility of using GLM data for studying plasma phenomena","authors":"A. Filatov","doi":"10.12737/szf-83202212","DOIUrl":"https://doi.org/10.12737/szf-83202212","url":null,"abstract":"The article deals with scientific and technical problems associated with the functionality of the geostationary lightning mapper, which is currently used for meteorological monitoring. Results of the study into the Schumann resonance phenomenon and the technical parameters of the mapper were analyzed simultaneously. A hypothesis is offered which suggests that there are pulsations in the time dependences of the radiation power of lightning activity at frequencies corresponding to Schumann resonance. A new application of the geostationary lightning mapper for studying plasma phenomena is proposed. Adding to the mapper an acousto-optic filter and a camera, which has the functions of switching the resolution/frame rate parameters, is shown to be useful for both meteorological and plasma studies.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124357740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}