{"title":"Multicollinearity in Logistic Regression Model -Subject Review-","authors":"N. S. Ibrahim, N. Mohammed, Shaimaa Waleed","doi":"10.33899/IQJOSS.2020.165448","DOIUrl":"https://doi.org/10.33899/IQJOSS.2020.165448","url":null,"abstract":"The logistic regression model is one of the modern statistical methods developed to predict the set of quantitative variables (nominal or monotonous), and it is considered as an alternative test for the simple and multiple linear regression equation as well as it is subject to the model concepts in terms of the possibility of testing the effect of the overall pattern of the group of independent variables on the dependent variable and in terms of its use For concepts of standard matching criteria, and in some cases there is a correlation between the explanatory variables which leads to contrast variation and this problem is called the problem of Multicollinearity. This research included an article review to estimate the parameters of the logistic regression model in several biased ways to reduce the problem of multicollinearity between the variables. These methods were compared through the use of the mean square error (MSE) standard. The methods presented in the research have been applied to Monte Carlo simulation data to evaluate the performance of the methods and compare them, as well as the application to real data and the simulation results and the real application that the logistic ridge estimator is the best of other method.","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127056228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use the PSO algorithm to estimate the Cox process parameters.","authors":"M. Hussain, M. Sulaiman","doi":"10.33899/IQJOSS.2020.165442","DOIUrl":"https://doi.org/10.33899/IQJOSS.2020.165442","url":null,"abstract":"","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125229347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New approach for data encrypted and hiding by EMD method","authors":"Ghada Thanoon Younis, Ibrahim Fathallah, R. Mahdi","doi":"10.33899/IQJOSS.2020.165443","DOIUrl":"https://doi.org/10.33899/IQJOSS.2020.165443","url":null,"abstract":"","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129788600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inverse Generalized Gamma Distribution with it's properties","authors":"H. Saieed, Mehasen Saleh Abdulla, H. Hayawi","doi":"10.33899/IQJOSS.2020.165446","DOIUrl":"https://doi.org/10.33899/IQJOSS.2020.165446","url":null,"abstract":"Abstract: In this paper, we introduce a new life time distribution . This distribution based on the reciprocal of Generalized Gamma (GG) random variable . This new distribution is called the Inverse Generalized Gamma (IGG) Distribution in which some of the inverse distributions are special cases. The important benefit of this distribution is ability to fit skewed data that cannot be fitted accurately by many other ungeneralized life time distributions. This distribution has many applications in pollution data ,engineering ,Biological fields and reliability. Some theoretical properties of the distribution has been studied such as: moments, mode, median and other properties.","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130704658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Logistic Regression with Time-Stratified Method for Air Pollution Datasets Forecasting","authors":"S. Mohammad, O. Hannon","doi":"10.33899/IQJOSS.2020.165444","DOIUrl":"https://doi.org/10.33899/IQJOSS.2020.165444","url":null,"abstract":"< Particular matter (PM10) studying and forecasting is necessary to control and reduce the damage of environment and human health. There are many pollutants as sources of air pollution may effect on PM10 variable. Studied datasets have been taken from the Kuala Lumpur meteorological station, Malaysia. Logistic regression (LR) is built by using generalized linear model as a special case of linear statistical methods, therefore it may reflect inaccurate results when used with nonlinear datasets. Time stratified (TS) method in different styles is proposed for satisfying more homogeneity of datasets. It includes ordering similar seasons in different years together to formulate new variable smoother than their original. The results of LR model in this study reflect outperforming for time stratified datasets comparing to full dataset. In conclusion, LR forecasting can be depended after datasets time stratifying to satisfy more accuracy with nonlinear multivariate datasets in which PM10 is to dependent variable.","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122065791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparisons between Logistic Regression and Support Vector Machine for Air Pollution Datasets Forecasting","authors":"S. Mohammad, O. Hannon","doi":"10.33899/IQJOSS.2020.165445","DOIUrl":"https://doi.org/10.33899/IQJOSS.2020.165445","url":null,"abstract":"Particular matter (PM10) studying and forecasting is necessary to control and reduce the damage of environment and human health. There are many pollutants as sources of air pollution (Co, So2, O 3, Nox, No, Wind Speed, and Ambient Temperature) may effect on PM10 variable. PM10 and the pollutant variables have been taken from the meteorological station in Kuala Lumpur, Malaysia. All of these variables classified as nonlinear data. Logistic regression (LR) model can be used for modeling and forecasting these multivariable datasets. LR is one of linear statistical methods, therefore it may reflect inaccurate results when used with nonlinear datasets. To improve the results of forecasting, support vector machine (SVM) method has been suggested in this study. The results in this study reflect outperforming for SVM method comparing to LR. In conclusion, SVM forecasting can be used for more accuracy with nonlinear multivariate datasets when PM10 is as dependent variable.","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129250655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Some Linear Dynamic Systems with Bivariate Wavelets","authors":"T. Ali, Mardin Samir Ali","doi":"10.33899/iqjoss.2019.164176","DOIUrl":"https://doi.org/10.33899/iqjoss.2019.164176","url":null,"abstract":"There are many statistical methods related to the forecasting of time series without any input variables such as autoregressive integrated moving average (ARIMA models). In this research, some linear dynamic systems, represented by ARIMA with exogenous input variables (ARIMAX models) were used to forecast crude oil prices (considered as output variable) for OPEC organization with the help of crude oil production (considered as input variable) depending on the data starting from the period of 1973 until 2018. Using traditional ARIMAX method and proposed method (Bivariate Wavelet Filtering) for the time series data in order to select one of them for forecasting through comparing some measures of accuracy, such as MSE, FPE, and AIC. Then, applying crude oil prices for OPEC using the traditional ARIMAX models and ARIMAX models with applying the bivariate wavelet filtering, especially bivariate Haar wavelet. The main conclusions of the research were that the success of bivariate wavelet filtering in forecasting of crude oil prices using proposed model was more appropriate than traditional models, and the forecasting of crude oil prices using proposed method in 2020 will be fairly less than 2019.","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126966607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Employ spiral model analysis and design tool to optimize software written in Java","authors":"Rahma Salem Alsawaf, A. Hamoo","doi":"10.33899/iqjoss.2019.164193","DOIUrl":"https://doi.org/10.33899/iqjoss.2019.164193","url":null,"abstract":"","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132540650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}