Water Reuse最新文献

筛选
英文 中文
Assessment of carbon neutrality in waste water treatment systems through deep learning algorithm 基于深度学习算法的污水处理系统碳中和评价
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-08-25 DOI: 10.2166/wrd.2023.154
L. Sundar, H. Almujibah, A. Alshahri, V. Ancha
{"title":"Assessment of carbon neutrality in waste water treatment systems through deep learning algorithm","authors":"L. Sundar, H. Almujibah, A. Alshahri, V. Ancha","doi":"10.2166/wrd.2023.154","DOIUrl":"https://doi.org/10.2166/wrd.2023.154","url":null,"abstract":"\u0000 \u0000 Around the world, it is growing more and harder to provide clean water and safe drinking water. In wastewater treatment, sensors are employed, and the Internet of Things is used to transmit data (IoT). Chemical oxygen demand (COD), biochemical demand (BOD), total nitrogen (T-N), total suspended solids (TSS), and phosphorous (T-P) components all contribute to eutrophication, which must be avoided. The wastewater sector has lately made efforts to become carbon neutral; however, the environmental impact and the road to carbon neutrality have received very little attention. The challenges are caused by poor prediction. This research proposes deep learning modified neural networks (DLMNN) with Binary Spotted Hyena Optimizer (BSHO) for modeling and calculations to address this challenge. All efforts for resource recovery, water reuse, and energy recovery partially attain this objective. In contrast to previous modeling techniques, the DLMNN-training BSHOs and validation demonstrated outstanding accuracy shown by the model's high coefficient (R2) for both training and testing. Also covered are recent developments and problems with nanomaterials made from sustainable carbon and graphene quantum dots, as well as their uses in the treatment and purification of wastewater. The proposed model DLMNN-BSHO achieved 95.936% precision, 95.326% recall, 93.747% F-score, and 99.637% accuracy.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44778714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating two Algerian cities' desalination plants coupled with solar energy systems using TRNSYS 使用TRNSYS模拟阿尔及利亚两个城市的海水淡化厂与太阳能系统的耦合
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-08-22 DOI: 10.2166/wrd.2023.141
Sara Irki, Edet Albright, N. Merzouk, S. Hanini, Sami Barkaoui, M. Benaissa, D. Ghernaout, N. Elboughdiri
{"title":"Simulating two Algerian cities' desalination plants coupled with solar energy systems using TRNSYS","authors":"Sara Irki, Edet Albright, N. Merzouk, S. Hanini, Sami Barkaoui, M. Benaissa, D. Ghernaout, N. Elboughdiri","doi":"10.2166/wrd.2023.141","DOIUrl":"https://doi.org/10.2166/wrd.2023.141","url":null,"abstract":"\u0000 \u0000 The Bouzaréah in northern Algeria's province and Ghardaïa in southern Algeria's province are particularly vulnerable to drought and water scarcity, even if apparent differences in climatic conditions mark each region. Though it may seem counterintuitive, Ghardaïa has considerable water resources that could be tapped for agriculture. Our study aimed to design a prototype of a desalination unit coupled with a solar collector for these two provinces using the TRNSYS 16. The desalination unit is composed of vacuum membrane distillation (VMD) coupled with a solar collector, and the photovoltaic has been designed according to the climatic conditions of each region. In this work, the approach adopted is to integrate a model developed in the literature into a simulation environment (TRNSYS) coupled with the CODE-BLOCKS compiler and FORTRAN programming language to create a new component (i.e., VMD process). The permeation flux and the power to load reached their maximum values with the charge of solar irradiation 48 kg/h m2 and 6,300 kJ/h, respectively, for Ghardaïa at the sun irradiation value 800 W/m2 and temperature of 34 °C. Results showed that Ghardaïa had a higher GOR value than Bouzaréah over the year (10.947 vs. 8.3389).","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47626319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-LSTM and partial mutual information selection-based forecasting groundwater salinization levels 基于Bi-LSTM和部分互信息选择的地下水盐渍化水平预测
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-08-14 DOI: 10.2166/wrd.2023.050
A. Muniappan, T. Jarin, R. Sabitha, Ayman A. Ghfar, I. M. A. Fattah, C. Bowa, M. Mwanza
{"title":"Bi-LSTM and partial mutual information selection-based forecasting groundwater salinization levels","authors":"A. Muniappan, T. Jarin, R. Sabitha, Ayman A. Ghfar, I. M. A. Fattah, C. Bowa, M. Mwanza","doi":"10.2166/wrd.2023.050","DOIUrl":"https://doi.org/10.2166/wrd.2023.050","url":null,"abstract":"\u0000 \u0000 Fresh-saline groundwater is currently distributed in a highly heterogeneous way throughout the world. Groundwater salinization is a serious environmental issue that harms ecosystems and public health in coastal regions worldwide. Because of the complexities of groundwater salinization processes and the variables that influence them, it is still challenging to predict groundwater salinity concentrations precisely. This study compares cutting-edge machine learning (ML) algorithms for predicting groundwater salinity and identifying contributing factors. This study employs bi-directional long short-term memory (BiLSTM) to indicate the salinity of groundwater. The input variable selection problem has recently attracted attention in the time series modeling community because it has been shown that information-theoretic input variable selection algorithms provide a more accurate representation of the modeled process than linear alternatives. To generate a variety of sample combinations for training multiple BiLSTM models, the PMIS-selected predictors are used, and the predicted values from various BiLSTM models are also used to calculate the degree of prediction uncertainty for groundwater levels. The findings give policymakers insights for recommending groundwater salinity remediation and management strategies in the context of excessive groundwater exploitation in coastal lowland regions. To ensure sustainable groundwater management in coastal areas, it is essential to recognize the significant impact of human-caused factors on groundwater salinization.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46320664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart IoT-based water treatment with a Supervisory Control and Data Acquisition (SCADA) system process 基于智能物联网的水处理与监控和数据采集(SCADA)系统过程
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-08-14 DOI: 10.2166/wrd.2023.052
Dwarakanath B., Kalpana Devi P., Ranjith Kumar, A. S. M. Metwally, G. A. Ashraf, Bheema Lingaiah Thamineni
{"title":"Smart IoT-based water treatment with a Supervisory Control and Data Acquisition (SCADA) system process","authors":"Dwarakanath B., Kalpana Devi P., Ranjith Kumar, A. S. M. Metwally, G. A. Ashraf, Bheema Lingaiah Thamineni","doi":"10.2166/wrd.2023.052","DOIUrl":"https://doi.org/10.2166/wrd.2023.052","url":null,"abstract":"\u0000 Water treatment is necessary to ensure the availability of clean and safe water for various uses. Integrating Internet of Things (IoT) technology with water purification systems has shown enormous potential in recent years for enhancing the efficiency and efficacy of the treatment process. Monitoring the disposal of sewage in treatment facilities is the primary obstacle. As a result, a Supervisory Control And Data Acquisition (SCADA) system, including the IoT, has been proposed to ensure the proper operation of these sewer systems and limit the risk of overflow and malfunction. In this paper, we suggest a novel approach that blends Deep Belief Networks (DBNs) with an IoT-based water treatment system equipped with a SCADA system for increased monitoring and control. An IoT–SCADA system can be implemented at various wastewater collection and treatment phases. Secondly, incorporating DBNs enhances the system's predictive capabilities, enabling proactive maintenance and decision-making to prevent potential failures and optimize resource allocation. The proposed technique computes the efficacy of the effluent treatment facility and ensures that chemical emissions do not exceed permissible limits. Furthermore, Complex Event Processing (CEP) can be utilized to evaluate and analyze the massive influx of real-time data sets provided by IoT sensors.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41543819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in saline water treatment: a review 盐水处理技术进展综述
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-08-12 DOI: 10.2166/wrd.2023.065
V. Somashekar, A. Anand, V. Hariprasad, E. Elsehly, M. Kapulu
{"title":"Advancements in saline water treatment: a review","authors":"V. Somashekar, A. Anand, V. Hariprasad, E. Elsehly, M. Kapulu","doi":"10.2166/wrd.2023.065","DOIUrl":"https://doi.org/10.2166/wrd.2023.065","url":null,"abstract":"\u0000 \u0000 The growing population and increasing water demand necessitate exploring alternative sources of water, including saline water. Saline water treatment technologies have undergone significant advancements in recent years, enabling the production of potable water from seawater and brackish water. This review provides an overview of the current state of saline water treatment technologies, including desalination and membrane-based processes. The advantages and limitations of each technology and their suitability for different applications are discussed. Recent advancements in materials and techniques that have led to improvements in energy efficiency, productivity, and cost-effectiveness of these technologies are highlighted. Finally, the future directions and challenges in the field of saline water treatment are outlined.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44028292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient-Boosted Decision Tree with used Slime Mould Algorithm (SMA) for wastewater treatment systems 基于黏菌算法的梯度增强决策树在污水处理系统中的应用
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-07-20 DOI: 10.2166/wrd.2023.046
Jyoti Chauhan, R. M. Rani, V. Prashanthi, H. Almujibah, A. Alshahri, Koppula Srinivas Rao, A. Radhakrishnan
{"title":"Gradient-Boosted Decision Tree with used Slime Mould Algorithm (SMA) for wastewater treatment systems","authors":"Jyoti Chauhan, R. M. Rani, V. Prashanthi, H. Almujibah, A. Alshahri, Koppula Srinivas Rao, A. Radhakrishnan","doi":"10.2166/wrd.2023.046","DOIUrl":"https://doi.org/10.2166/wrd.2023.046","url":null,"abstract":"\u0000 One way to improve the infrastructure, operations, monitoring, maintenance, and management of wastewater treatment systems is to use machine learning modelling to make smart forecasting, tracking, and failure prediction systems. This method aims to use industry data to treat the wastewater treatment model. Gradient-Boosted Decision Tree (GBDT) algorithms were used gradually to predict wastewater plant parameters. In addition, we used the Slime Mould Algorithm (SMA) for feature extraction and other acceptable tuning procedures. The input and effluent Chemical Oxygen Demand (COD) prediction for effluent treatment systems applies to the GBDT approaches employed in this study. GBDT-SMA employs artificial intelligence to provide precise method modelling for complex systems. Several training and model testing techniques were used to determine the best topology for the neural network models and decision trees. The GBDT-SMA model performed best across all methods. With 500 data, GBDT-SMA achieved an accuracy of 96.32%, outperforming other models like Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Deep Convolutional Neural Network (DCNN), and K-neighbours RF, which reached an accuracy of 82.97, 87.45, 85.98, and 91.45%, respectively.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43229932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water reuse for vine irrigation: from research to full-scale implementation 藤蔓灌溉的水再利用:从研究到全面实施
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-07-19 DOI: 10.2166/wrd.2023.054
Chrystelle Ayache, Y. Poussade, Yves Jaeger, E. Soyeux
{"title":"Water reuse for vine irrigation: from research to full-scale implementation","authors":"Chrystelle Ayache, Y. Poussade, Yves Jaeger, E. Soyeux","doi":"10.2166/wrd.2023.054","DOIUrl":"https://doi.org/10.2166/wrd.2023.054","url":null,"abstract":"\u0000 \u0000 Water scarcity is a worldwide problem, which leads to unprecedented pressure on water supply in arid and semi-arid regions. Treating wastewater is an alternative water resource, therefore, its reuse for agricultural irrigation has been growing worldwide since the beginning of the 21st century. In several regions of wine-producing countries (e.g., Australia, California – USA, Spain), wastewater reuse appears to be the most accessible alternative, both financially and technically, for agricultural uses that notably do not require drinking water. From the summer of 2022, vine irrigation full-scale implementation will start with tertiary treated municipal wastewater in the French Languedoc region. This was made possible thanks to a collaborative research project conducted between 2013 and 2018 to address all potential health and environmental risks associated with this process. This research project was conducted in the south of France, with experimental and control plots both equipped with drip irrigation systems. All the results produced during the research project demonstrated the feasibility of applying this process for vine drip irrigation while effectively managing health and environmental risks and complying with the regulation (treated water microbiological quality). A social acceptance and economic study were also performed in order to broaden the scope of the project scalability evaluation.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44055391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of adsorption and filtration processes on greywater microbiological contamination and the potential human health risk reduction 吸附和过滤工艺对灰水中微生物污染的影响及潜在的人类健康风险降低
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-07-19 DOI: 10.2166/wrd.2023.029
M. Mortula, K. Fattah, Fatima Iqbal, Zahid Khan
{"title":"Effects of adsorption and filtration processes on greywater microbiological contamination and the potential human health risk reduction","authors":"M. Mortula, K. Fattah, Fatima Iqbal, Zahid Khan","doi":"10.2166/wrd.2023.029","DOIUrl":"https://doi.org/10.2166/wrd.2023.029","url":null,"abstract":"\u0000 Recycling treated greywater (GW) for onsite, non-potable applications can reduce the potable water demand typically used for non-potable purposes. The conventional methods for GW treatment are limited in their ability to remove wide-ranging pollutants that are inexpensive and use low energy. For this reason, effective and low-cost onsite treatment options are in demand. This study examines the effectiveness of sand filtration (SF), granulated blast furnace slag (GBFS), and activated carbon (AC) in the treatment of GW from a residential apartment building in Sharjah, United Arab Emirates. The study relies on four different pilot-scale experimental setups to investigate the effectiveness of SF, AC, and GBFS in treating microorganisms from GW and evaluate the microbial risk reduction using these treatment processes. A quantitative microbial risk assessment (QMRA) approach is used for risk assessment. Results show that GBFS achieves a higher reduction of total coliform (TC) (0.54–2.05 log removal) and fecal coliform (FC) (1.96–2.30 log removal) than AC. SF improves reduction by 0.13–3.39 log removal and 1.11–3.68 log removal for TC and FC, respectively. The study also reveals substantial FC and Escherichia coli risk reduction by SF, AC and GBFS.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43658307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of p-carboxy phenyl amino maleimide-g-cellulose acetate/ZrO2 nanocomposite membrane for water desalination 对羧基苯基氨基马来酰亚胺-g-醋酸纤维素/ZrO2纳米复合海水淡化膜的合成与表征
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-07-17 DOI: 10.2166/wrd.2023.036
A. Abdel-Naby, Bushra A. Alabdullatif, Sarah Aldulaijan, Yanallah Alqarni
{"title":"Synthesis and characterization of p-carboxy phenyl amino maleimide-g-cellulose acetate/ZrO2 nanocomposite membrane for water desalination","authors":"A. Abdel-Naby, Bushra A. Alabdullatif, Sarah Aldulaijan, Yanallah Alqarni","doi":"10.2166/wrd.2023.036","DOIUrl":"https://doi.org/10.2166/wrd.2023.036","url":null,"abstract":"\u0000 \u0000 The reaction of p-carboxy phenyl amino maleimide (CHM) with cellulose acetate (CA), led to the formation of a modified cellulose acetate polymer (MCA), which was characterized by UV/Vis, 1H NMR, and 13C NMR. The active sites of the reaction were the –NH group of (CHM) and the OAc of CA. CA was grafted with (CHM) to build branches on its main chains, using benzoyl peroxide as an initiator. The results of 1H NMR and 13C NMR revealed the presence of (CHM) moieties inside the polymeric matrix. The (CA-g-CHM) ZrO2 was fabricated into a membrane, using a phase inversion technique. The effect of ZrO2 content on the water flux was discussed. The SEM/EDS was also used to characterize the membrane contents and morphology. The morphology of the membrane showed the grafted parts and the EDS confirmed the presence of nitrogen atoms in the polymeric matrix. The thermogravimetry (TGA) results showed that the membrane exhibited high thermal stability which would adjust the membrane for the desalination process. The desalination test indicated the removal of NaCl salt by the membrane, as shown by the EDS and 1H NMR spectroscopy results. The membrane exhibited good antibacterial and antifungal properties.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43497629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization, and performance of chitosan/nylon 6/polyurethane blend for the removal of chromium (VI) and lead (II) ions from aqueous solutions for enhanced kinetic adsorption studies 壳聚糖/尼龙6/聚氨酯共混物的合成、表征和性能用于从水溶液中去除铬(VI)和铅(II)离子以增强动力学吸附研究
IF 4.5 4区 环境科学与生态学
Water Reuse Pub Date : 2023-06-07 DOI: 10.2166/wrd.2023.019
S. Jayakumar, S. Sudarsan, B. Sridhar, E. Parthiban, A. Jerwin Prabu, S. Jha
{"title":"Synthesis, characterization, and performance of chitosan/nylon 6/polyurethane blend for the removal of chromium (VI) and lead (II) ions from aqueous solutions for enhanced kinetic adsorption studies","authors":"S. Jayakumar, S. Sudarsan, B. Sridhar, E. Parthiban, A. Jerwin Prabu, S. Jha","doi":"10.2166/wrd.2023.019","DOIUrl":"https://doi.org/10.2166/wrd.2023.019","url":null,"abstract":"\u0000 \u0000 Adsorption is vital for the elimination of Cr6+ and Pb2+ ions in the contaminated solution medium. A ternary blend made up of chitosan, nylon 6 and polyurethane foam (CS/Ny 6/PUF) blend in the ratio of 2:1:1 has been investigated. These blends are used as an adsorbent due to the insoluble nature in acidic and basic medium. The adsorption efficacy was analyzed by modifying pH, contact time, and adsorbent dosage. The maximum uptake of metal ions has been exhibited in the pH range 5. An equilibrium adsorption statistic indicated that adsorption isotherm follows the Freundlich model. The adsorption kinetic parameters specified that the adsorption of chromium has shown pseudo-second-order and lead pseudo-first-order reaction.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42394276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信