{"title":"Dynamic Controllability of Conditional Simple Temporal Networks Is PSPACE-complete","authors":"Massimo Cairo, Romeo Rizzi","doi":"10.1109/TIME.2016.17","DOIUrl":"https://doi.org/10.1109/TIME.2016.17","url":null,"abstract":"Even after the proposal of various solution algorithms, the precise computational complexity of checking whether a Conditional Temporal Network is Dynamically Controllable had still remained widely open. This issue gets settled in this paper which provides constructions, algorithms, and bridging lemmas and arguments to formally prove that: (1) the problem is PSPACE-hard, and (2) the problem lies in PSPACE.","PeriodicalId":347020,"journal":{"name":"2016 23rd International Symposium on Temporal Representation and Reasoning (TIME)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130822250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Instantaneous Reaction-Time in Dynamic-Consistency Checking of Conditional Simple Temporal Networks","authors":"Massimo Cairo, Carlo Comin, Romeo Rizzi","doi":"10.1109/TIME.2016.16","DOIUrl":"https://doi.org/10.1109/TIME.2016.16","url":null,"abstract":"Conditional Simple Temporal Network CSTN is a constraint-based graph-formalism for conditional temporal planning. Three notions of consistency arise for CSTNs and CSTPs: weak, strong, and dynamic. Dynamic-Consistency (DC) is the most interesting notion, but it is also the most challenging. In order to address the DC-Checking problem, in [Comin and Rizzi, TIME 2015] we introduced ε-DC (a refined, more realistic, notion of DC), and provided an algorithmic solution to it. Next, given that DC implies ε-DC for some sufficiently small ε > 0, and that for every ε > 0 it holds that ε-DC implies DC, we offered a sharp lower bounding analysis on the critical value of the reaction-time ε under which the two notions coincide. This delivered the first (pseudo) singly-exponential time algorithm for the DC-Checking of CSTNs. However, the ε-DC notion is interesting per se, and the ε-DC-Checking algorithm in [Comin and Rizzi, TIME 2015] rests on the assumption that the reaction-time satisfies ε > 0, leaving unsolved the question of what happens when ε = 0. In this work, we introduce and study π-DC, a sound notion of DC with an instantaneous reaction-time (i.e. one in which the planner can react to any observation at the same instant of time in which the observation is made). Firstly, we demonstrate by a counter-example that π-DC is not equivalent to 0-DC, and that 0-DC is actually inadequate for modeling DC with an instantaneous reaction-time. This shows that the main results obtained in our previous work do not apply directly, as they were formulated, to the case of ε = 0. Motivated by this observation, as a second contribution, our previous tools are extended in order to handle π-DC, and the notion of ps-tree is introduced, also pointing out a relationship between π-DC and HyTN-Consistency. Thirdly, a simple reduction from π-DC-Checking to DC-Checking is identified. This allows us to design and to analyze the first sound-and-complete π-DC-Checking procedure. Remarkably, the time complexity of the proposed algorithm remains (pseudo) singly-exponential in the number of propositional letters.","PeriodicalId":347020,"journal":{"name":"2016 23rd International Symposium on Temporal Representation and Reasoning (TIME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116934161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Verify LTL with Fairness Assumptions Efficiently","authors":"Yong Li, Lei Song, Yuan Feng, Lijun Zhang","doi":"10.1109/TIME.2016.12","DOIUrl":"https://doi.org/10.1109/TIME.2016.12","url":null,"abstract":"This paper deals with model checking problems with respect to LTL properties under fairness assumptions. We first present an efficient algorithm to deal with a fragment of fairness assumptions and then extend the algorithm to handle arbitrary ones. Notably, by making use of some syntactic transformations, our algorithm avoids constructing corresponding Büchi automata for the whole fairness assumptions, which can be very large in practice. We implement our algorithm in NuSMV and consider a large selection of formulas. Our experiments show that in many cases our approach exceeds the automata-theoretic approach up to several orders of magnitude, in both time and memory.","PeriodicalId":347020,"journal":{"name":"2016 23rd International Symposium on Temporal Representation and Reasoning (TIME)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124003210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}