Essential Number Theory最新文献

筛选
英文 中文
On the Northcott property for infinite extensions 论无限扩展的诺斯考特属性
Essential Number Theory Pub Date : 2023-10-17 DOI: 10.2140/ent.2023.2.1
Martin Widmer
{"title":"On the Northcott property for infinite extensions","authors":"Martin Widmer","doi":"10.2140/ent.2023.2.1","DOIUrl":"https://doi.org/10.2140/ent.2023.2.1","url":null,"abstract":"We start with a brief survey on the Northcott property for subfields of the algebraic numbers $Qbar$. Then we introduce a new criterion for its validity (refining the author's previous criterion), addressing a problem of Bombieri. We show that Bombieri and Zannier's theorem, stating that the maximal abelian extension of a number field $K$ contained in $K^{(d)}$ has the Northcott property, follows very easily from this refined criterion. Here $K^{(d)}$ denotes the composite field of all extensions of $K$ of degree at most $d$.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139317805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Diophantine problem about Kummer surfaces 关于库默曲面的丢番图问题
Essential Number Theory Pub Date : 2022-10-26 DOI: 10.2140/ent.2022.1.51
W. Duke
{"title":"A Diophantine problem about Kummer surfaces","authors":"W. Duke","doi":"10.2140/ent.2022.1.51","DOIUrl":"https://doi.org/10.2140/ent.2022.1.51","url":null,"abstract":"Upper and lower bounds are given for the number of rational points of bounded height on a double cover of projective space ramified over a Kummer surface.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130662021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptional zeros, sieve parity, Goldbach 例外零,筛偶校验,哥德巴赫
Essential Number Theory Pub Date : 2022-10-26 DOI: 10.2140/ent.2022.1.13
J. Friedlander, H. Iwaniec
{"title":"Exceptional zeros, sieve parity, Goldbach","authors":"J. Friedlander, H. Iwaniec","doi":"10.2140/ent.2022.1.13","DOIUrl":"https://doi.org/10.2140/ent.2022.1.13","url":null,"abstract":"","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123945303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quartic index form equations and monogenizations of quartic orders 四次指数形成方程和四次阶的单类化
Essential Number Theory Pub Date : 2022-03-19 DOI: 10.2140/ent.2022.1.57
S. Akhtari
{"title":"Quartic index form equations and monogenizations of quartic orders","authors":"S. Akhtari","doi":"10.2140/ent.2022.1.57","DOIUrl":"https://doi.org/10.2140/ent.2022.1.57","url":null,"abstract":". Some upper bounds for the number of monogenizations of quartic orders are established by considering certain classical Diophantine equations, namely index form equations in quartic number fields, and cubic and quartic Thue equations.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124708432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modularity lifting theorems 模块化提升定理
Essential Number Theory Pub Date : 2022-02-11 DOI: 10.2140/ent.2022.1.73
Toby Gee
{"title":"Modularity lifting theorems","authors":"Toby Gee","doi":"10.2140/ent.2022.1.73","DOIUrl":"https://doi.org/10.2140/ent.2022.1.73","url":null,"abstract":"Updated version of 2013 Arizona WInter School notes on modularity lifting theorems for for two-dimensional p-adic representations, using wherever possible arguments that go over to the n-dimensional (self-dual) case.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126045337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A note on Tate’s conjectures for abelianvarieties 关于Tate关于阿贝尔变异的猜想的注解
Essential Number Theory Pub Date : 2021-12-30 DOI: 10.2140/ent.2022.1.41
Chao Li, Wei Zhang
{"title":"A note on Tate’s conjectures for abelian\u0000varieties","authors":"Chao Li, Wei Zhang","doi":"10.2140/ent.2022.1.41","DOIUrl":"https://doi.org/10.2140/ent.2022.1.41","url":null,"abstract":". In this mostly expository note, we explain a proof of Tate’s two conjectures [Tat65] for algebraic cycles of arbitrary codimension on certain products of elliptic curves and abelian surfaces over number fields.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127877097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Invariance of the tame fundamental group under base change between algebraically closed fields 驯服基群在代数闭域间基数变化下的不变性
Essential Number Theory Pub Date : 2020-05-19 DOI: 10.2140/ent.2024.3.1
Aaron Landesman
{"title":"Invariance of the tame fundamental group under base change between algebraically closed fields","authors":"Aaron Landesman","doi":"10.2140/ent.2024.3.1","DOIUrl":"https://doi.org/10.2140/ent.2024.3.1","url":null,"abstract":"We show that the tame 'etale fundamental group of a connected normal finite type separated scheme remains invariant upon base change between algebraically closed fields of characteristic $p geq 0$.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"55 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141204169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The cubic case of Vinogradov’s mean valuetheorem 维诺格拉多夫均值定理的三次情形
Essential Number Theory Pub Date : 2015-12-10 DOI: 10.2140/ent.2022.1.1
D. R. Heath-Brown
{"title":"The cubic case of Vinogradov’s mean value\u0000theorem","authors":"D. R. Heath-Brown","doi":"10.2140/ent.2022.1.1","DOIUrl":"https://doi.org/10.2140/ent.2022.1.1","url":null,"abstract":"This is an expository paper, giving a simplified proof of the cubic case of the main conjecture for Vinogradov's mean value theorem.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125766510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信