{"title":"四次指数形成方程和四次阶的单类化","authors":"S. Akhtari","doi":"10.2140/ent.2022.1.57","DOIUrl":null,"url":null,"abstract":". Some upper bounds for the number of monogenizations of quartic orders are established by considering certain classical Diophantine equations, namely index form equations in quartic number fields, and cubic and quartic Thue equations.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quartic index form equations and monogenizations of quartic orders\",\"authors\":\"S. Akhtari\",\"doi\":\"10.2140/ent.2022.1.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Some upper bounds for the number of monogenizations of quartic orders are established by considering certain classical Diophantine equations, namely index form equations in quartic number fields, and cubic and quartic Thue equations.\",\"PeriodicalId\":338657,\"journal\":{\"name\":\"Essential Number Theory\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essential Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/ent.2022.1.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essential Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ent.2022.1.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quartic index form equations and monogenizations of quartic orders
. Some upper bounds for the number of monogenizations of quartic orders are established by considering certain classical Diophantine equations, namely index form equations in quartic number fields, and cubic and quartic Thue equations.