论无限扩展的诺斯考特属性

Martin Widmer
{"title":"论无限扩展的诺斯考特属性","authors":"Martin Widmer","doi":"10.2140/ent.2023.2.1","DOIUrl":null,"url":null,"abstract":"We start with a brief survey on the Northcott property for subfields of the algebraic numbers $\\Qbar$. Then we introduce a new criterion for its validity (refining the author's previous criterion), addressing a problem of Bombieri. We show that Bombieri and Zannier's theorem, stating that the maximal abelian extension of a number field $K$ contained in $K^{(d)}$ has the Northcott property, follows very easily from this refined criterion. Here $K^{(d)}$ denotes the composite field of all extensions of $K$ of degree at most $d$.","PeriodicalId":338657,"journal":{"name":"Essential Number Theory","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Northcott property for infinite extensions\",\"authors\":\"Martin Widmer\",\"doi\":\"10.2140/ent.2023.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We start with a brief survey on the Northcott property for subfields of the algebraic numbers $\\\\Qbar$. Then we introduce a new criterion for its validity (refining the author's previous criterion), addressing a problem of Bombieri. We show that Bombieri and Zannier's theorem, stating that the maximal abelian extension of a number field $K$ contained in $K^{(d)}$ has the Northcott property, follows very easily from this refined criterion. Here $K^{(d)}$ denotes the composite field of all extensions of $K$ of degree at most $d$.\",\"PeriodicalId\":338657,\"journal\":{\"name\":\"Essential Number Theory\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essential Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/ent.2023.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essential Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ent.2023.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首先简要介绍代数数 $\Qbar$ 子域的诺斯科特性质。然后,我们针对邦比埃里(Bombieri)的一个问题,提出了一个新的有效性标准(改进了作者以前的标准)。我们证明了邦比埃里和赞尼尔的定理,即$K^{(d)}$中包含的数域$K$的最大无边际扩展具有诺斯科特性质。这里,$K^{(d)}$ 表示度数至多为 $d$ 的 $K$ 所有扩展的复合域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Northcott property for infinite extensions
We start with a brief survey on the Northcott property for subfields of the algebraic numbers $\Qbar$. Then we introduce a new criterion for its validity (refining the author's previous criterion), addressing a problem of Bombieri. We show that Bombieri and Zannier's theorem, stating that the maximal abelian extension of a number field $K$ contained in $K^{(d)}$ has the Northcott property, follows very easily from this refined criterion. Here $K^{(d)}$ denotes the composite field of all extensions of $K$ of degree at most $d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信