{"title":"Про оцiнку ймовiрностi перевищення лiнiї зваженою сумою субгауссових випадкових процесi","authors":"Р. Є. Ямненко, Н. В. Юрченко","doi":"10.24144/2616-7700.2020.2(37).122-129","DOIUrl":"https://doi.org/10.24144/2616-7700.2020.2(37).122-129","url":null,"abstract":"Субгауссові випадкові величини мажоруються за розподілом центрованими гауссовими випадковими величинами, а тому є їхнім природним узагальненням. У цій роботі розглядається задача оцінювання ймовірності перевищенням рівня, що заданий деякою прямою $ct$,$ c>0$, траєкторіями зваженої суми субгауссових випадкових процесів $X_i$, $i=overline{1,n}$, визначених на компактній множині $B$, із певними ваговими функціями $w_i(t)$. А саме, будуються оцінки зверху імовірностей вигляду $boldsymbol{mathrm{P}}left{{mathop{mathrm{sup}}_{tmathrm{in }B} left(sum^n_{i=1}{w_ileft(tright)X_i(t)}mathrm{-}ctright) }mathrm{>}xright}$, $boldsymbol{mathrm{P}}left{{mathop{mathrm{inf}}_{tmathrm{in }B} left(sum^n_{i=1}{w_ileft(tright)X_i(t)}mathrm{-}ctright) }mathrm{<-}xright}$ чи linebreak $boldsymbol{mathrm{P}}left{{mathop{mathrm{sup}}_{tmathrm{in }B} left|sum^n_{i=1}{w_ileft(tright)X_i(t)}mathrm{-}ctright| }mathrm{>}xright}$. Така задача має безпосереднє застосування в linebreak теорії черг при оцінюванні ймовірності переповнення буфера $x>0$ скінченного розміру у системі з одиничним сервером і лінійною інтенсивністю обслуговування, а також у страховій математиці при оцінюванні ймовірності банкрутства відповідного процесу ризику. Використовуючи метод метричної ентропії, узагальнено і покращено попередні результати, отримані автором у роботі [4] для більш загального класу $Phi$-субгауссових випадкових процесів. Як приклад, отриману оцінку застосовано до усередненої суми субгауссових вінерівських випадкових процесів -- випадкових процесів, що мають таку саму коваріаційну функцію, як і (гауссівський) вінерівський процес, але із субгауссовими траєкторіями.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47778765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Консистентнiсть оцiнки найменших квадратiв параметрiв тригонометричної моделi регресiї у присутностi лiнiйного випадкового шуму","authors":"О. В. Iванов, О. В. Митрофанова","doi":"10.24144/2616-7700.2020.2(37).54-65","DOIUrl":"https://doi.org/10.24144/2616-7700.2020.2(37).54-65","url":null,"abstract":"Регресiйний аналiз є iстотною частиною математичної та прикладної статистики. Нелiнiйний регресiйний аналiз є значним розширенням та ускладненням класичного лiнiйного регресiйного аналiзу, завдяки використанню нелiнiйних або частково нелiнiйних за параметрами моделей, якi адекватнiше описують, нiж лiнiйнi моделi, явища, що потребують статистичного аналiзу. Велика кiлькiсть прикладних проблем у численних наукових, технiчних та гуманiтарних галузях знань дають поштовх розвитку нелiнiйного регресiйного аналiзу. Задача оцiнювання векторного параметра сигналу в моделях спостереження «сигнал + шум» є добре вiдомою проблемою статистики випадкових процесiв, та у випадку нелiнiйного параметра сигналу – задачею нелiнiйного регресiйного аналiзу. Серед рiзноманiтностi задач нелiнiйного регресiйного аналiзу оцiнювання амплiтуд та кутових частот суми гармонiчних коливань, що спостерiгається на фонi випадкового шуму, займає значне мiсце, завдяки її численним застосуванням. Статистичнi моделi такого типу називаються тригонометричними моделями регресiї, а проблема статистичного оцiнювання її параметрiв називається задачею виявлення прихованих перiодичностей. Статтю присвячено вивченню тригонометричної моделi регресiї, в якiй випадковий шум є лiнiйним Левi-керованим стацiонарним четвертого порядку випадковим процесом iз нульовим середнiм, iнтегровную та iнтегровную з квадратом iмпульсною перехiдною функцiєю. Це припущення призводить до iнтегровностi коварiацiйної функцiї та кумулянтної функцiї 4-го порядку. Для оцiнювання амплiтуд та кутових частот такої тригонометричної моделi ми використовуємо оцiнки найменших квадратiв у сенсi Уолкера, тобто розглянуто спецiальну множину параметрiв, щоб розрiзнити належним чином рiзнi кутовi частоти в сумi гармонiчних коливань. У статтi доведено теорему про сильну консистентнiсть оцiнки найменших квадратiв за описаними вище припущеннями щодо випадкового шуму. Для отримання такого результату було доведено дуже важливу лему про рiвномiрну збiжнiсть майже напевно середнього значення перетворення Фурьє лiнiйного Левi-керованого випадкового процеса. Ця лема є головним iнструментом доведення теореми про сильну консистентнiсть. Для доведення теореми, по-перше, знаходимо деякi представлення оцiнок найменших квадратiв амплiтуд через вiдповiднi оцiнки кутових частот. По-друге, ми пiдставляємо цi формули у функцiонал методу найменших квадратiв. Останнiй крок доведення полягає у перетвореннi L2-норми рiзницi мiж емпiричною тригонометричною функцiєю регресiї та iстиною функцiєю регресiї таким чином, що ця норма прямує до нуля майже напевно тодi i тiльки тодi, коли оцiнки є сильно консистентними.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69124555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Про квазiпервиннi диференцiальнi iдеали напiвкiлець","authors":"І. О. Мельник","doi":"10.24144/2616-7700.2020.2(37).75-81","DOIUrl":"https://doi.org/10.24144/2616-7700.2020.2(37).75-81","url":null,"abstract":"Поняття квазiпервинного iдеалу було вперше введено в комутативних диференцiальних кiльцях, тобто комутативних кiльцях, якi розглядаються разом iз заданим на них диференцiюванням, як диференцiальний iдеал, максимальний серед диференцiальних iдеалiв, якi не перетинаються iз деякою мультиплiкативно-замкненою пiдмножиною кiльця. Поняття диференцiювання у напiвкiльцi традицiйно визначають як адитивне вiдображення, яке задовольняє правило Лейбнiца. У зв’язку з швидким розвитком теорiї напiвкiлець в останнi роки, виникла потреба у вивченнi iдеалiв, якi визначаються подiбними властивостями у напiвкiльцях. Ця стаття присвячена дослiдженню поняття квазiпервинного iдеалу в диференцiальних напiвкiльцях (якi означаються як напiвкiльця разом iз диференцiюванням, заданому на них), якi не обов’язково комутативнi. Метою статтi є показати, як квазiпервиннi iдеали пов’язанi з первинними диференцiальними iдеалами, примарними iдеалами, максимальними iдеалами та iншими типами iдеалiв у напiвкiльцях. Стаття складається з двох основних частин. У першiй частинi автор дослiджує деякi властивостi квазiпервинних диференцiальних iдеалiв, а також подає деякi приклади таких iдеалiв, зокрема первиннi диференцiальнi, максимальнi диференцiальнi та iдеали, якi можна отримати в результатi дiї оператора диференцiювання на первиннi iдеали напiвкiльця. У цiй частинi подано теорему, у якiй даються еквiвалентнi умови того, що квазiпервинний iдеал є первинним. У другiй частинi статтi розглядаються ланцюги квазiпервинних iдеалiв. У цiй частинi встановлено взаємозв’язки мiж квазiпервинними iдеалами та iншими типами диференцiальних iдеалiв напiвкiлець. В однiй з теорем подано характеризацiю таких iдеалiв у випадку комутативних напiвкiлець. У цiй характеризацiї використовуються поняття радикалу iдеалу напiвкiльця та оператор диференцiювання в напiвкiльцях. На завершення статтi подано теорему про те, що кожний ланцюг квазiпервинних iдеалiв напiвкiльця має точну верхню i точну нижню межу. Також доведено, що кожний квазiпервинний iдеал, який мiстить деякий диференцiальний iдеал, мiстить квазiпервинний iдеал, мiнiмальний серед усiх квазiпервинних iдеалiв даного напiвкiльця, якi мiстять вищезгаданий диференцiальний iдеал.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69124565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Властивостi узагальненого розв’язку задачi Кошi для рiвняння теплопровiдностi з випадковою правою частиною","authors":"Г. І. Сливка-Тилищак","doi":"10.24144/2616-7700.2019.2(35).62-70","DOIUrl":"https://doi.org/10.24144/2616-7700.2019.2(35).62-70","url":null,"abstract":"The subject of this work is at the intersection of two branches of mathematics: mathematical physics and stochastic processes. The physical formulation of problems of mathematical physics with random factors was studied by Kampe de Feriet. In the works by E. Beisenbaev, Yu.V. Kozachenko and V.V. Buldygin a new approach studying the solutions of partial differential equations with random initial conditions was proposed. The authors investigate the convergence in probability of the sequence of function spaces of partial sums approximating the solution of a problem. The mentioned approach was used in the worksby E. Barrasa de La Krus, Endzhyrgly, Ya.A. Kovalchuk. In the paper by V.V. Buldygin and Yu.V. Kozachenko the application of the Fourier method for the homogeneous hyperbolic equation with Gaussian initial conditions is justified and existence conditions in terms of correlation functions are studied. Homogeneous hyperbolic equation with random initial conditions from the space Sub ϕ (Ω) are considered in works by B. V. Dovgay, G.I.Slyvka-Tylyshchak. The model of a solution of a hyperbolic type equation with random initial conditions was investigated in the papers by G.I. Slyvka-Tylyshchak. There is studied a boundary value problem of mathematical physics for the inhomogeneous hyperbolic equation with ϕ-subgaussian in right part in works by B. V. Dovgay. The parabolic typeequations of Mathematical Physics with random factors of Orlicz spaces have been studied in the papers by Yu.V. Kozachenko and K.J. Veresh. Properties of the classical solution of the heat equation on a line with a random right part are considered in works by Yu.V. Kozachenko and G.I. Slyvka-Tylyshchak.We consider a Cauchy problem for the heat equations with a random right part. We study the inhomogeneous heat equation on a line with a random right part. We consider the right part as a random function of the space L p (Ω). The conditions of existence with probability one generalized solution of the problem are investigated.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48084892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Задача вибору партнерiв для органiзацiї спiвпрацi в рамках наукових та освiтнiх проєктiв","authors":"Х. Сюй, О. Ю. Кучанський","doi":"10.24144/2616-7700.2019.2(35).134-142","DOIUrl":"https://doi.org/10.24144/2616-7700.2019.2(35).134-142","url":null,"abstract":"","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69124363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Концептуальна модель iнформацiйної системи пiдтримки прийняття рiшень в аграрнiй сферi","authors":"Ч. Цзі, Ю. В. Андрашко","doi":"10.24144/2616-7700.2019.2(35).156-161","DOIUrl":"https://doi.org/10.24144/2616-7700.2019.2(35).156-161","url":null,"abstract":"","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69124501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Про моделювання динамiки розповсюдження iнформацiї на основi неоднорiдних дифузiйних гiбридних моделей","authors":"Євген Івохін, Л. Т. Аджубей","doi":"10.24144/2616-7700.2019.2(35).112-118","DOIUrl":"https://doi.org/10.24144/2616-7700.2019.2(35).112-118","url":null,"abstract":"","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47575055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Оцiнки Шора для зваженого числа стiйкостi графа","authors":"Петро Іванович Стецюк, О. С. Пічугіна","doi":"10.24144/2616-7700.2019.2(35).71-81","DOIUrl":"https://doi.org/10.24144/2616-7700.2019.2(35).71-81","url":null,"abstract":"Application of a technique of dual Lagrangian quadratic bounds of N.Z. Shor to studying the Maximum Weighted Independent Set problem is described. By the technique, two such N.Z. Shor’s upper bounds are obtained. These are bounds of the graph weighted independence number $ alpha (G, w) $, which can be found in polynomial time. The first bound $ psi (G, w) $ is associated with a quadratic model of the Maximum Weighted Independent Set problem and coincides with the known Lov'asz number $ vartheta (G, w) $. The second bound $ psi_1 (G, w) $ corresponds to the same quadratic model supplemented by a family of functionally redundant quadratic constraints and is able to improve the accuracy of the upper bound $ alpha (G, w) $ for special graph families. It is shown that, if graph is bipartite or perfect, $ psi (G, w)= alpha (G, w) $, while $ psi_1 (G, w) =alpha (G, w) $ for $ t $- or $ W_p $-perfect graphs. Based on the graph classes that were singled out, a technique is demonstrated, which enables us to form new classes of graphs for which polynomial solvability of the Maximum Weighted Independent Set problem is preserved. Thus, by an example of the Maximum Weighted Independent Set problem in a graph, it is shown how the Lagrangian bounds’ technique can be applied to solving an issue of single outing new classes of polynomial solvable combinatorial optimization problems. This approach can be used for improving known bounds of the objective function in combinatorial optimization problems as well as for justifying their polynomial solvability.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48996942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Про одну задачу лексикографiчної оптимiзацiї з iнтервальними оцiнками та альтернативними складовими","authors":"А. Ю. Брила","doi":"10.24144/2616-7700.2019.1(34).60-68","DOIUrl":"https://doi.org/10.24144/2616-7700.2019.1(34).60-68","url":null,"abstract":"","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69124711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Канонiчнi форми матричних зображень комутативних моноїдiв четвертого порядку","authors":"В. М. Бондаренко, Я. В. Зацiха","doi":"10.24144/2616-7700.2019.1(34).12-25","DOIUrl":"https://doi.org/10.24144/2616-7700.2019.1(34).12-25","url":null,"abstract":"","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69123860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}