Volume 2: Fluid Mechanics; Multiphase Flows最新文献

筛选
英文 中文
WearGP: A UQ/ML Wear Prediction Framework for Slurry Pump Impellers and Casings WearGP:浆泵叶轮和壳体的UQ/ML磨损预测框架
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-10-12 DOI: 10.1115/fedsm2020-20059
A. Tran, Yan Wang, J. Furlan, K. Pagalthivarthi, Mohamed Garman, Aaron Cutright, R. Visintainer
{"title":"WearGP: A UQ/ML Wear Prediction Framework for Slurry Pump Impellers and Casings","authors":"A. Tran, Yan Wang, J. Furlan, K. Pagalthivarthi, Mohamed Garman, Aaron Cutright, R. Visintainer","doi":"10.1115/fedsm2020-20059","DOIUrl":"https://doi.org/10.1115/fedsm2020-20059","url":null,"abstract":"\u0000 Dedicated to the memory of John Furlan.\u0000 Wear prediction is important in designing reliable machinery for slurry industry. It usually relies on multi-phase computational fluid dynamics, which is accurate but computationally expensive. Each run of the simulations can take hours or days even on a high-performance computing platform. The high computational cost prohibits a large number of simulations in the process of design optimization. In contrast to physics-based simulations, data-driven approaches such as machine learning are capable of providing accurate wear predictions at a small fraction of computational costs, if the models are trained properly. In this paper, a recently developed WearGP framework [1] is extended to predict the global wear quantities of interest by constructing Gaussian process surrogates. The effects of different operating conditions are investigated. The advantages of the WearGP framework are demonstrated by its high accuracy and low computational cost in predicting wear rates.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122014889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Optimization of NACA 0012 Airfoil Performance in Dynamics Stall Using Continuous Suction Jet 利用连续吸力射流优化NACA 0012翼型动态失速性能
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-10-12 DOI: 10.1115/fedsm2020-20147
M. Tadjfar, Siroos Kasmaiee, S. Noori
{"title":"Optimization of NACA 0012 Airfoil Performance in Dynamics Stall Using Continuous Suction Jet","authors":"M. Tadjfar, Siroos Kasmaiee, S. Noori","doi":"10.1115/fedsm2020-20147","DOIUrl":"https://doi.org/10.1115/fedsm2020-20147","url":null,"abstract":"\u0000 Many different active flow control methods are used to manipulate the flow field about aerodynamic surfaces in order to obtain the most desirable aerodynamic performance. Among these techniques, boundary layer suction is one of the most effective techniques used to improve aerodynamic performance of the airfoil. In this study, the configuration of a pure suction jet actuator is optimized over an oscillating NACA0012 airfoil at the Reynolds number of 1.35 × 105 to control the dynamic stall behavior. The airfoil was pitched around the quarter-chord location with a sinusoidal motion and the angle of attack was varied between −5 and 25 degrees. Genetic algorithm was implemented as the optimization method. However, since large number of numerical simulations were required for this purpose, an artificial neural network was employed for training a function between the control parameters and the airfoil aerodynamic coefficients. Aerodynamic performance defined as lift-to-drag ratio was chosen as the objective function of the optimization. Location, velocity amplitude, opening length and jet incidence angle were the control parameters of this optimization.\u0000 It was shown that when the velocity amplitude and opening length were maximum, the airfoil reached its highest performance. Moreover, the aerodynamic characteristics of the airfoil were remarkably improved when the jet incident angle approached to 90 degrees. Placing the suction jet actuator in the range between 3 to 6 percent of the airfoil chord, was found to have the greatest effect on improving the aerodynamic performance. For the optimum configuration, the airfoil separation. It was shown that when the velocity amplitude and opening length were maximum, the airfoil reached its highest performance. Moreover, the aerodynamic characteristics of the airfoil were peaked in the range between 90 to 120 degrees, with 107 having the best performance in our database.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125789950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of Turbulent Boundary Layer Profiles Modified With Injection or Uniform Concentration of Drag-Reducing Polymer Solution 注入或均匀浓度减阻聚合物溶液改变湍流边界层轮廓的比较
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20317
B. Elbing
{"title":"Comparison of Turbulent Boundary Layer Profiles Modified With Injection or Uniform Concentration of Drag-Reducing Polymer Solution","authors":"B. Elbing","doi":"10.1115/fedsm2020-20317","DOIUrl":"https://doi.org/10.1115/fedsm2020-20317","url":null,"abstract":"\u0000 The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer. The classical view is that the polymers modify the intercept constant within the log-region without impacting the von Kármán coefficient, which results in the log-region being unaltered though shifted outward from the wall. However, it has been recently shown that this is not accurate, especially at high drag reduction (> 40%). Past work examining the von Kármán coefficient and intercept constant has shown that polymer properties must impact the deviations, but without any quantification of the dependence. This work reviews the literature to make estimates of the local polymer properties and then demonstrates that the scatter at HDR can be attributed to variations in the Weissenberg number. In addition, new polymer ocean results are incorporated and shown to be quite consistent with polymer injection results using the maximum polymer concentration to define the polymer properties.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122959246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wake Properties of an Oscillating Airfoil Undergoing Small Amplitude Asymmetric Oscillation 振荡翼型在小幅度非对称振荡下的尾迹特性
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20360
Colin M. Stutz, D. Bohl, Melissa A. Green
{"title":"Wake Properties of an Oscillating Airfoil Undergoing Small Amplitude Asymmetric Oscillation","authors":"Colin M. Stutz, D. Bohl, Melissa A. Green","doi":"10.1115/fedsm2020-20360","DOIUrl":"https://doi.org/10.1115/fedsm2020-20360","url":null,"abstract":"\u0000 The flow around, and in the wake of, pitching airfoils has received renewed interest due to its potential for thrust production at low Reynolds numbers. Past work has centered on the flow fields generated by symmetric pitching of the airfoil. Studies investigating the effects of asymmetric motion are more limited. This work focuses on the wake patterns developed due to asymmetric pitching. Particle Image Velocimetry (PIV) is used to quantify the flow field around a NACA0012 airfoil undergoing small amplitude, high frequency asymmetric pitching. The airfoil is pitched about the quarter chord point with an amplitude of ±4° at reduced frequencies of k = 2.6–5.8 at a Rec = 12000. Pitching symmetries of 50/50, 40/60 and 30/70 are studied, where the symmetry is defined by the fraction of the cycle spent in the pitch down versus pitch up motion. The data show that for the 50/50 (symmetric) motions two alternating sign vortices, with equivalent strength, are formed as expected. The asymmetric cases show that a single vortex is formed during the “fast” portion of the pitching motion. Multiple vortices are formed during the “slow” portion of the pitching motion. The number of secondary vortices and the downstream evolution of the vortices depends on the symmetry value. In some cases they remain isolated but orbit other vortical structures, while in other cases they pair with other vortical structures, and finally when the reduced frequency and asymmetry values are high enough the vortex array shows interaction between cycles.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127753903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Solid Particle Erosion and Uncertainty in Elbows by Artificial Intelligence Methods 用人工智能方法预测肘部固体颗粒侵蚀和不确定性
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20458
S. Karimi, Bohan Xu, Alireza Asgharpour, S. Shirazi, S. Sen
{"title":"Predicting Solid Particle Erosion and Uncertainty in Elbows by Artificial Intelligence Methods","authors":"S. Karimi, Bohan Xu, Alireza Asgharpour, S. Shirazi, S. Sen","doi":"10.1115/fedsm2020-20458","DOIUrl":"https://doi.org/10.1115/fedsm2020-20458","url":null,"abstract":"\u0000 AI approaches include machine learning algorithms in which models are trained from existing data to predict the behavior of the system for previously unseen cases. Recent studies at the Erosion/Corrosion Research Center (E/CRC) have shown that these methods can be quite effective in predicting erosion. However, these methods are not widely used in the engineering industries due to the lack of work and information in this area. Moreover, in most of the available literature, the reported models and results have not been rigorously tested. This fact suggests that these models cannot be fully trusted for the applications for which they are trained. Therefore, in this study three machine learning models, including Elastic Net, Random Forest and Support Vector Machine (SVM), are utilized to increase the confidence in these tools. First, these models are trained with a training data set. Next, the model hyper-parameters are optimized by using nested cross validation. Finally, the results are verified with a test data set. This process is repeated several times to assure the accuracy of the results. In order to be able to predict the erosion under different conditions with these three models, six main variables are considered in the training data set. These variables include material hardness, pipe diameter, particle size, liquid viscosity, liquid superficial velocity, and gas superficial velocity. All three studied models show good prediction performances. The Random Forest and SVM approaches, however, show slightly better results compared to Elastic Net. The performance of these models is compared to both CFD erosion simulation results and also to Sand Production Pipe Saver (SPPS) results, a mechanistic erosion prediction software developed at the E/CRC. The comparison shows SVM prediction has a better match with both CFD and SPPS. The application of AI model to determine the uncertainty of calculated erosion is also discussed.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131383397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On How the Generation of Lift Can Be Explained in a Closed Form Based on the Fundamental Conservation Equations 基于基本守恒方程的升力产生如何用封闭形式解释
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20261
P. Epple, H. Babinsky, M. Steppert, M. Fritsche
{"title":"On How the Generation of Lift Can Be Explained in a Closed Form Based on the Fundamental Conservation Equations","authors":"P. Epple, H. Babinsky, M. Steppert, M. Fritsche","doi":"10.1115/fedsm2020-20261","DOIUrl":"https://doi.org/10.1115/fedsm2020-20261","url":null,"abstract":"\u0000 The generation of lift is a fundamental problem in aerodynamics and in general in fluid mechanics. The explanations on how lift is generated are often very incomplete or even not correct. Perhaps the most popular explanation of lift is the one with the Bernoulli equation and with the longer path over an airfoil as compared to the path below the airfoil, assuming the flow arrives at the same time at the trailing edge on both paths. This is an intuitive assumption, but no equation is derived from this assumption. In some explanations the Bernoulli equation is also complemented with Newton’s laws of motion. In other explanations Newton’s law is said to be the only explanation. Other explanations mention the Venturi suction effect to explain the generation of lift. In books of aerodynamics and on the homepage of well-known research institutes the explanations are, although better and partially correct, still very often incomplete. In this contribution the generation of lift is explained in a scientific way based on the conservation principles of mass, momentum and energy and how they have to be applied to close the system of equations in order to explain the generation of lift. The most common incomplete or incorrect explanations of lift are also analysed and it is explained why they are incomplete or wrong. In this work the generation of lift is explained based on the conservation equations. It is shown how and when they apply to the problem of lift generation and how the system of equations has to be closed.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132458485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonian Modeling and Energy Analysis of a Hydro Electric Generating Set in the Sudden Load Decreasing Transient 水力发电机组负荷骤降暂态的哈密顿建模与能量分析
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20113
Pengfei Wang, Diyi Chen, Huanhuan Li
{"title":"Hamiltonian Modeling and Energy Analysis of a Hydro Electric Generating Set in the Sudden Load Decreasing Transient","authors":"Pengfei Wang, Diyi Chen, Huanhuan Li","doi":"10.1115/fedsm2020-20113","DOIUrl":"https://doi.org/10.1115/fedsm2020-20113","url":null,"abstract":"\u0000 Hydroelectric generation system is mainly composed of penstock, hydro-turbine, generator, servicing facility and power load, its stability is directly related to the dynamic characteristics of each subsystem, but not completely dependent on the behavior of the subsystems. To better study the transient energy characteristics and stabilization mechanism of the hydroelectric generating set in the sudden load decreasing transient. And make full use of strengths of generalized Hamiltonian system in describing energy flow, the Hamiltonian model of a hydroelectric generating set including the turbine, water diversion system and generator is established by the method of orthogonal decomposition. Firstly, the energy flow of the hydroelectric generating set in the framework of generalized Hamiltonian theory is proved theoretically to be consistent with the real system, and the transient process of sudden load decreasing can be described effectively. Moreover, the variation laws of the flow, the rotating speed and the power angle of the set in the sudden load decreasing transient are studied respectively. The results indicate that the constructed Hamilton function can effectively describe the energy change of the system. It provides theoretical support for the stable operation of the hydroelectric generating set in the sudden load decreasing transient, and a new research idea for the stable operation of the set in other transient processes.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121309286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Active and Passive Curvature on the Hydrodynamic Performance of Flapping Fins 主动和被动曲率对扑翼水动力性能的影响
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20044
D. Fernández‐Gutiérrez, W. V. Rees
{"title":"Effect of Active and Passive Curvature on the Hydrodynamic Performance of Flapping Fins","authors":"D. Fernández‐Gutiérrez, W. V. Rees","doi":"10.1115/fedsm2020-20044","DOIUrl":"https://doi.org/10.1115/fedsm2020-20044","url":null,"abstract":"\u0000 Ray-finned fish swim by flapping their fins, which are composed of bony rays connected by an inextensible membrane. Throughout the flapping cycle, the fins typically undergo both ‘passive’ deformation due to hydrodynamic loading, and ‘active’ deformation arising from internal musculature deforming the fin against the flow. To systematically analyze the impact of fin shape on hydrodynamic performance, a parametric definition of the fin geometry and its modes of deformation is required, consistent with the fin’s material and mechanical properties. In this paper we present a model and algorithm to determine the fin shape corresponding to an arbitrary out-of-plane curvature distribution for each ray. The shape is computed by iteratively enforcing constraints corresponding to membrane inextensibility, and negligible torsional stiffness of the rays. Based on this model, we present a low-order parametrization of fin shapes that capture the predominant deformation modes due to combined hydrodynamic loading and intrinsic actuation, as compared to experimental observations. To demonstrate the model’s ability to provide insight into the effect of curvature on hydrodynamic fin performance, we integrate our algorithm into a 3D Navier-Stokes solver Using this framework, we present initial results on the cycle-averaged thrust coefficient of a passively and actively deforming generalized trapezoidal caudal fin model at Reynolds number 1500 and Strouhal number 0.3. The results demonstrate that our model, algorithm, and integration with the flow solver form a useful framework to understand the effect of 3D curvature on hydrodynamic performance of flapping fins.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116158908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Numerical Study of Oblique Water Entry Problems 斜进水问题的数值研究
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20374
Ya-Yi Chang, A. Y. Tong
{"title":"A Numerical Study of Oblique Water Entry Problems","authors":"Ya-Yi Chang, A. Y. Tong","doi":"10.1115/fedsm2020-20374","DOIUrl":"https://doi.org/10.1115/fedsm2020-20374","url":null,"abstract":"\u0000 A series of numerical experiments have been carried out on the water entry problem of three-dimensional multi-degree-freedom cylinders. The circular cylinder was released above the water with a specified inclined angle and velocity at entry. The hydrodynamics of the water entry problem have been investigated numerically. The Piecewise Linear Interface Calculation (PLIC) schemes have been applied in conjunction with the Volume of Fluid (VOF) method to capture the interface. Overset meshes have been adopted to handle the moving object. The numerical model is built on the framework of OpenFOAM which is an open-source C++ toolbox. Numerical results have been obtained. Transient flow and pressure distributions have been generated. The presence of air entrapment which has been reported experimentally has also been confirmed in the numerical solution. The fluid physics of the oblique water entry problem such as the formation and development of the air entrapment has been explored. The transient positions and inclined angles of the moving circular cylinder have been found to be in good agreement with the experimental results. Parametric studies have been performed with major findings reported.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121873438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Four-Phase Flow of Oil, Gas, Water, and Sand Mixtures in Subsea Pipelines 海底管道中油、气、水和砂混合物的四相流
Volume 2: Fluid Mechanics; Multiphase Flows Pub Date : 2020-07-13 DOI: 10.1115/fedsm2020-20024
Mohamed Odan, Faraj Ben Rajeb, M. Rahman, A. Aborig, S. Imtiaz, Yan Zhang, M. Awad
{"title":"Four-Phase Flow of Oil, Gas, Water, and Sand Mixtures in Subsea Pipelines","authors":"Mohamed Odan, Faraj Ben Rajeb, M. Rahman, A. Aborig, S. Imtiaz, Yan Zhang, M. Awad","doi":"10.1115/fedsm2020-20024","DOIUrl":"https://doi.org/10.1115/fedsm2020-20024","url":null,"abstract":"\u0000 This paper investigates issues around four-phase (Oil/CO2/water/sand) flows occurring within subsea pipelines. Multi-phase flows are the norm, as production fluid from reservoirs typically include sand with water. However, these multi-phase flow mixtures, whether three- or four-phase, are at risk of forming slug flows. The inclusion of sand in this mixture is concerning, as it not only leads to increased levels of pipeline erosion but it also has the potential, to accumulate sand at the bottom of the pipe, blocking the pipe or at the very least hindering the flow. This latter impact can prove problematic, as a minimum fluid velocity must be maintained to ensure the safe and regulated flow of particles along a pipeline. The presence of low amounts of sand particles in oil/gas/water flow mixtures can serve to reduce the pressure exerted on bends. The sand volume fraction must in this case, be relatively low such that the particles’ resistance causes only a moderate loss in pressure. Therefore, the study aims to gauge the impact of oil/gas/water/sand mixtures on various pipeline structures as well as to further investigate the phenomenon of flow-induced vibration to determine the optimal flow variables which can be applied predicting the structural responses of subsea pipelines.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127759765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信