基于基本守恒方程的升力产生如何用封闭形式解释

P. Epple, H. Babinsky, M. Steppert, M. Fritsche
{"title":"基于基本守恒方程的升力产生如何用封闭形式解释","authors":"P. Epple, H. Babinsky, M. Steppert, M. Fritsche","doi":"10.1115/fedsm2020-20261","DOIUrl":null,"url":null,"abstract":"\n The generation of lift is a fundamental problem in aerodynamics and in general in fluid mechanics. The explanations on how lift is generated are often very incomplete or even not correct. Perhaps the most popular explanation of lift is the one with the Bernoulli equation and with the longer path over an airfoil as compared to the path below the airfoil, assuming the flow arrives at the same time at the trailing edge on both paths. This is an intuitive assumption, but no equation is derived from this assumption. In some explanations the Bernoulli equation is also complemented with Newton’s laws of motion. In other explanations Newton’s law is said to be the only explanation. Other explanations mention the Venturi suction effect to explain the generation of lift. In books of aerodynamics and on the homepage of well-known research institutes the explanations are, although better and partially correct, still very often incomplete. In this contribution the generation of lift is explained in a scientific way based on the conservation principles of mass, momentum and energy and how they have to be applied to close the system of equations in order to explain the generation of lift. The most common incomplete or incorrect explanations of lift are also analysed and it is explained why they are incomplete or wrong. In this work the generation of lift is explained based on the conservation equations. It is shown how and when they apply to the problem of lift generation and how the system of equations has to be closed.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On How the Generation of Lift Can Be Explained in a Closed Form Based on the Fundamental Conservation Equations\",\"authors\":\"P. Epple, H. Babinsky, M. Steppert, M. Fritsche\",\"doi\":\"10.1115/fedsm2020-20261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The generation of lift is a fundamental problem in aerodynamics and in general in fluid mechanics. The explanations on how lift is generated are often very incomplete or even not correct. Perhaps the most popular explanation of lift is the one with the Bernoulli equation and with the longer path over an airfoil as compared to the path below the airfoil, assuming the flow arrives at the same time at the trailing edge on both paths. This is an intuitive assumption, but no equation is derived from this assumption. In some explanations the Bernoulli equation is also complemented with Newton’s laws of motion. In other explanations Newton’s law is said to be the only explanation. Other explanations mention the Venturi suction effect to explain the generation of lift. In books of aerodynamics and on the homepage of well-known research institutes the explanations are, although better and partially correct, still very often incomplete. In this contribution the generation of lift is explained in a scientific way based on the conservation principles of mass, momentum and energy and how they have to be applied to close the system of equations in order to explain the generation of lift. The most common incomplete or incorrect explanations of lift are also analysed and it is explained why they are incomplete or wrong. In this work the generation of lift is explained based on the conservation equations. It is shown how and when they apply to the problem of lift generation and how the system of equations has to be closed.\",\"PeriodicalId\":333138,\"journal\":{\"name\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2020-20261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

升力的产生是空气动力学和流体力学中的一个基本问题。关于升力是如何产生的解释往往是非常不完整甚至不正确的。也许升力的最流行的解释是一个与伯努利方程和较长的路径在一个翼型相比,路径下的翼型,假设流量到达在同一时间在两个路径的后缘。这是一个直观的假设,但没有从这个假设推导出方程。在一些解释中,伯努利方程也与牛顿运动定律相辅相成。在其他的解释中,牛顿定律被认为是唯一的解释。其他解释提到文丘里吸力效应来解释升力的产生。在空气动力学书籍和知名研究机构的主页上,虽然解释更好,部分正确,但仍然很不完整。在这个贡献中,基于质量、动量和能量的守恒原理,以科学的方式解释了升力的产生,以及如何将它们应用于闭合方程组以解释升力的产生。最常见的不完整或不正确的升降机解释也进行了分析,并解释了为什么他们是不完整或错误的。在这项工作中,升力的产生是基于守恒方程来解释的。说明了它们如何以及何时适用于升力产生问题,以及方程组如何必须封闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On How the Generation of Lift Can Be Explained in a Closed Form Based on the Fundamental Conservation Equations
The generation of lift is a fundamental problem in aerodynamics and in general in fluid mechanics. The explanations on how lift is generated are often very incomplete or even not correct. Perhaps the most popular explanation of lift is the one with the Bernoulli equation and with the longer path over an airfoil as compared to the path below the airfoil, assuming the flow arrives at the same time at the trailing edge on both paths. This is an intuitive assumption, but no equation is derived from this assumption. In some explanations the Bernoulli equation is also complemented with Newton’s laws of motion. In other explanations Newton’s law is said to be the only explanation. Other explanations mention the Venturi suction effect to explain the generation of lift. In books of aerodynamics and on the homepage of well-known research institutes the explanations are, although better and partially correct, still very often incomplete. In this contribution the generation of lift is explained in a scientific way based on the conservation principles of mass, momentum and energy and how they have to be applied to close the system of equations in order to explain the generation of lift. The most common incomplete or incorrect explanations of lift are also analysed and it is explained why they are incomplete or wrong. In this work the generation of lift is explained based on the conservation equations. It is shown how and when they apply to the problem of lift generation and how the system of equations has to be closed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信