ADVANCES IN DETONATION RESEARCH最新文献

筛选
英文 中文
О ВЫБОРЕ ОПТИМАЛЬНЫХ ТИПОВ КАМЕР СГОРАНИЯ ПРИ ИНИЦИИРОВАНИИ ГАЗОВОЙ ДЕТОНАЦИИ 关于在燃气爆炸时选择最佳燃烧类型
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a06
Дмитрий Валентинович Воронин
{"title":"О ВЫБОРЕ ОПТИМАЛЬНЫХ ТИПОВ КАМЕР СГОРАНИЯ ПРИ ИНИЦИИРОВАНИИ ГАЗОВОЙ ДЕТОНАЦИИ","authors":"Дмитрий Валентинович Воронин","doi":"10.30826/icpcd13a06","DOIUrl":"https://doi.org/10.30826/icpcd13a06","url":null,"abstract":"Проведено численное моделирование непрерывной газовой детонации в камере сгорания на основе уравнений Навье–Стокса с учетом турбулентности и диффузии веществ. Выполнен сравнительный анализ эффективности детонационного сгорания топлива в зависимости от геометрических параметров камер. Рассмотрены три возможных типа камеры (см. рисунок). Горючее и окислитель подавались в камеры раздельно через форсунки $S_1$ под определенным углом к поверхности камеры. Детонационный процесс во многом определялся интенсивностью турбулентного перемешивания реагентов (водород и кислород). Поверхность $S_2$ — область выхода продуктов детонации в атмосферу. Как показывают расчеты, для камеры первого типа характерно образование локальных зон с повышенными значениями термодинамических параметров, что может приводить к самопроизвольному {воспламенению} топлива и неоптимальному режиму работы двигателя. Здесь подача газа осуществляется сверху, а выход — направо. У стенки канала в пограничных слоях образуется область с повышенными значениями температуры (около 2000 K), что превышает температуру самовоспламенения смеси (1200 K). Для камеры второго типа характерно возникновение застойных зон у поверхности $S_1$ и выход значительной части непрореагировавшего топлива в атмосферу. Давление газа в камере у поверхностей входа $S_{11}$ и $S_{12}$ достигает значений 12 атм, что превышает давление газа в ресиверах (10 атм). Это приводит к запиранию потока и временному прекращению поступления водорода и кислорода в проточную камеру. Если поверхность $S_2$ расположена достаточно близко к поверхностям входа (менее 20 мм) и волна разрежения быстро уменьшит значения давления и температуры реагирующего газа, то наступает срыв детонации, что нарушает оптимальное функционирование камеры. Наиболее оптимальной выглядит камера 3-го типа, имеющая наиболее простую форму и позволяющая регулировать процесс перемешивания, меняя угол наклона струй топлива и окислителя по отношению к поверхности.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"113 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123557486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
О НЕКОТОРЫХ ДИНАМИЧЕСКИХ ЯВЛЕНИЯХ ПРИ РАСПРОСТРАНЕНИИ ГАЗОВОЙ ДЕТОНАЦИИ В СРЕДЕ С ПЕРИОДИЧЕСКОЙ НЕОДНОРОДНОСТЬЮ 关于气体在间歇性不均匀环境中爆炸的一些动态现象
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a09
А. Ю. Голдин, А. Р. Касимов
{"title":"О НЕКОТОРЫХ ДИНАМИЧЕСКИХ ЯВЛЕНИЯХ ПРИ РАСПРОСТРАНЕНИИ ГАЗОВОЙ ДЕТОНАЦИИ В СРЕДЕ С ПЕРИОДИЧЕСКОЙ НЕОДНОРОДНОСТЬЮ","authors":"А. Ю. Голдин, А. Р. Касимов","doi":"10.30826/icpcd13a09","DOIUrl":"https://doi.org/10.30826/icpcd13a09","url":null,"abstract":"Мы рассматриваем динамику одномерной волны детонации в газовой смеси с периодически меняющимися в пространстве свойствами. Это могут быть неоднородности температуры или концентрации топлива или неоднородности, связанные со свойствами канала, в котором распространяется волна. Хорошо известно, что одномерная детонация может распространяться со скоростью, зависящей от времени периодически или хаотически. Возникает вопрос о влиянии периодической неоднородности в горючей смеси на такую нестационарную динамику детонации. Этот вопрос исследовался ранее как в рамках модельного уравнения Бюргерса [1, 2] так и на основе уравнений Эйлера [3, 4]. В этих работах были обнаружены явления резонансного усиления колебаний скорости детонации и захвата частот. Последнее означает, что нерегулярные колебания скорости детонации при распространении в однородной среде могут быть стабилизированы в том смысле, что они становятся более регулярными, если волна бежит по периодически неоднородной среде. Стабилизация зависит от амплитуды и длины волны неоднородности. В данной работе продолжено исследование этих явлений в рамках уравнений Эйлера для идеального газа, реагирующего согласно модели Аррениуса. Обнаружено, что процесс захвата частот приводит к возникновению языков Арнольда и захвату мод разного порядка [5]. Рассчитанные для этого процесса числа вращений в зависимости от волнового числа периодичности в исходной смеси имеют вид дьявольской лестницы подобно тому, что наблюдается на практике и в некоторых более простых динамических системах [6, 7]. С той же целью выяснения влияния внешних периодических воздействий на нестационарную детонацию мы также исследовали одномерную детонацию в канале с неоднородной шероховатостью и двумерную детонацию в канале с учетом потерь импульса и тепла. В одномерной задаче с потерями динамика взаимодействия во многом подобна той, что имеет место при распространении детонации в неоднородной смеси. В двумерном случае возникают некоторые новые явления, связанные с особенностями ячеистой структуры.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115512367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ПРОГНОЗИРОВАНИЕ ВОЗМОЖНОСТИ РАЗВИТИЯ ПРОЦЕССОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ В СМЕСЕВЫХ РАКЕТНЫХ ТВЕРДЫХ ТОПЛИВАХ ПРИ РАЗЛИЧНЫХ ВИДАХ ВНЕШНИХ ВОЗДЕЙСТВИЙ ПО СТЕПЕНИ ДИСПЕРГИРОВАНИЯ 根据分散程度的各种外部影响,预测爆炸物转化为混合火箭固体燃料的可能性
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a25
Елена Вениаминовна Романова
{"title":"ПРОГНОЗИРОВАНИЕ ВОЗМОЖНОСТИ РАЗВИТИЯ ПРОЦЕССОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ В СМЕСЕВЫХ РАКЕТНЫХ ТВЕРДЫХ ТОПЛИВАХ ПРИ РАЗЛИЧНЫХ ВИДАХ ВНЕШНИХ ВОЗДЕЙСТВИЙ ПО СТЕПЕНИ ДИСПЕРГИРОВАНИЯ","authors":"Елена Вениаминовна Романова","doi":"10.30826/icpcd13a25","DOIUrl":"https://doi.org/10.30826/icpcd13a25","url":null,"abstract":"Теоретические подходы к анализу процессов, проходящих в высокоэнергетических составах, помимо специфических трудностей математического описания осложняются тем, что нет полной ясности в выделении из большого числа параметров разной физической природы тех, которые определяют поведение смесевых ракетных твердых топлив (СРТТ) на различных этапах жизненного цикла. При этом значительный объем информации о поведении СРТТ в различных условиях нагружения может быть получен только после детального и длительного изучения. Для анализа влияния уровня деформирования и термических воздействий на взрывчатые характеристики и возможность развития процессов взрывчатого превращения, а также моделирование поведения топливной композиции в реальных условиях в качестве объектов исследования выбраны современные высокоэнергетические СРТТ, различающихся структурой и сложностью компоновки, количеством доминирующих компонентов и смесей, уровнем реализуемых выходных свойств, параметров чувствительности, опасности компонентов. При проведении исследований была поставлена задача оценить их уровень опасности по степени диспергирования материалов при внешних воздействиях, так как одним из основных условий, приводящих к развитию переходных процессов, таких как взрыв или детонация (ПГВ–ПГД), является увеличение поверхности горения (диспергирование) в десятки и сотни раз при наличии сопутствующих процессов воспламенения или горения.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126312365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXPERIMENTAL STUDY OF THE INITIAL STAGE OF THE OPERATION PROCESS IN DETONATION ROCKET AND AIR-BREATHING ENGINES 爆轰火箭与吸气式发动机初期工作过程的实验研究
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a07
I. O. Shamshin, V. Ivanov, V. S. Aksenov, P. Gusev, S. Frolov
{"title":"EXPERIMENTAL STUDY OF THE INITIAL STAGE OF THE OPERATION PROCESS IN DETONATION ROCKET AND AIR-BREATHING ENGINES","authors":"I. O. Shamshin, V. Ivanov, V. S. Aksenov, P. Gusev, S. Frolov","doi":"10.30826/icpcd13a07","DOIUrl":"https://doi.org/10.30826/icpcd13a07","url":null,"abstract":"Detonation propulsion, both rocket-type and air-breathing, is currently a topical direction of research worldwide. Attention is mainly paid to various modes of operation of such engines, their stability, and reliability. As for the issues related to the initiation of the detonation process in such engines, they are usually not considered in detail. However, the initial stage of development of the operation process can be accompanied by a signi¦cant increase in the pressure acting on engine structural elements [1]. In the transition from research to prototypes, issues related to the weight of such engines and their thrust-to-weight ratio will come to the fore. To ensure a minimum margin of safety in engine design, it is required to organize mild rather than strong initiation of operation process excluding the possibility of severe explosions of large volumes of fuel mixture inside the engine or in its close vicinity. This work dealt with experimental simulation of ignition, §ame acceleration, and de§agration-to-detonation transition (DDT) in a semicon¦ned layer of explosive mixture in a slot representing the unrolled annular combustor of a rotating detonation engine. The test mixture was represented by nonpremixed ethylene oxygen mixture of overall stoichiometric composition.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133511244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
НОВЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ РАСПРОСТРАНЕНИЯ ДЕТОНАЦИИ В ВЯЗКОМ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В КАНАЛЕ 爆炸在运河湍流中扩散的新结果
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a08
В.А. Сабельников
{"title":"НОВЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ РАСПРОСТРАНЕНИЯ ДЕТОНАЦИИ В ВЯЗКОМ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В КАНАЛЕ","authors":"В.А. Сабельников","doi":"10.30826/icpcd13a08","DOIUrl":"https://doi.org/10.30826/icpcd13a08","url":null,"abstract":"Большинство исследований детонации посвящено распространению детонационных волн в каналах с покоящейся горючей {смесью} или в открытом пространстве. В экспериментах Белле и Деэ [1] было рассмотрено распространение детонационной волны против сверхзвукового потока в канале квадратного сечения с пограничными слоями. При помощи высокоскоростной шлиренвидеосъемки было обнаружено, что рост давления в детонационной волне вызывает отрыв пограничных слоев с образованием маховской ударно-волновой структуры. Авторы наблюдали распространение самоподдерживающейся детонации. Удивительный результат эксперимента — вывод о том, что скорость последней превосходила скорость классической детонации Чепмена–Жуге.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114460727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SHAPING OF EXPANDING CHANNEL FOR PRODUCING PLANAR DETONATIONS AT OPEN END 开口端产生平面爆轰的膨胀通道的成形
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a24
V. S. Aksenov, S. Frolov, I. A. Sadykov, I. O. Shamshin, A. S. Silantiev, V. A. Smetanyuk
{"title":"SHAPING OF EXPANDING CHANNEL FOR PRODUCING PLANAR DETONATIONS AT OPEN END","authors":"V. S. Aksenov, S. Frolov, I. A. Sadykov, I. O. Shamshin, A. S. Silantiev, V. A. Smetanyuk","doi":"10.30826/icpcd13a24","DOIUrl":"https://doi.org/10.30826/icpcd13a24","url":null,"abstract":"In [1], the innovative technology is proposed for pulsed detonation stamping of thin sheet parts. The technology consists in periodically exposing a workpiece to detonation waves and hot gaseous detonation products. The distinctive feature of the technology is the absence of a punch (the mating part of a pro¦led matrix). Compared to the detonation of condensed explosives, the use of gaseous detonation for stamping allows multiple periodic gasdynamic and thermal impact on a workpiece and simpli¦es the execution of technical supervision requirements. Due to the combined gasdynamic and thermal e¨ects of gas detonation on the workpiece, the new technology makes it possible to stamp workpieces made from brittle heat-resistant alloys without the use of expensive hot stamping technologies. A laboratory setup (Fig. 1) for pulsed detonation stamping has been created. The main part of the installation is a thick-walled expanding §at vertical channel with a volume of 30 l. In the lower narrow part of the channel, there is a prechamber with a mixing device and spark plugs. In the upper wide part of the channel, there is a §at §ange with a pro- ¦led matrix and fastening for a workpiece. The setup allows heating the workpiece and matrix with gas burners and operates as follows. Firstly, the channel is ¦lled through the prechamber with a stoichiometric methane oxygen mixture. Secondly, the mixture is ignited by spark plugs, and the arising §ame is transitioned to detonation. Finally, once a detonation wave is formed, it propagates along the channel and re§ects from the heated workpiece exerting a mechanical and thermal e¨ect on it. By changing the degree of channel ¦ll with an explosive mixture and cycle frequency, one can vary the intensity of the impact on the workpiece as well as the temperature of the workpiece and matrix. The duty cycle of the pulses can vary from 10 to 30 s. The shape of the expanding §at vertical channel must ensure that the workpiece is subjected to a planar detonation wave to avoid nonuniform deformation. For estimating the §ow pattern ahead of the workpiece and the parameters of the incident detonation wave, multivariate three-dimensional numerical simulations were performed. Calculations provided pressure and temperature ¦eld evolution ahead of the workpiece for di¨erent shapes of the expanding channel and allowed choosing the optimal channel shape. The characteristic time of mechanical and thermal action of a detonation wave on the workpiece was estimated at 0.1 and 10 ms, respectively. Experiments showed that the developed technology made it possible to stamp thin sheet parts of complex shape made from various materials, including brittle heat-resistant alloys. As an example, Fig. 2 shows a photograph of the stamping product.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"101 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133640457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRANSMISSION OF SHOCK AND DETONATION WAVES INTO SEMICONFINED CHANNELS FILLED WITH LIQUID SATURATED BY GAS BUBBLES 激波和爆震波在充满被气泡饱和的液体的半精细通道中的传输
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a19
K. A. Avdeev, V. S. Aksenov, I. A. Sadykov, S. Frolov, F. Frolov, I. O. Shamshin
{"title":"TRANSMISSION OF SHOCK AND DETONATION WAVES INTO SEMICONFINED CHANNELS FILLED WITH LIQUID SATURATED BY GAS BUBBLES","authors":"K. A. Avdeev, V. S. Aksenov, I. A. Sadykov, S. Frolov, F. Frolov, I. O. Shamshin","doi":"10.30826/icpcd13a19","DOIUrl":"https://doi.org/10.30826/icpcd13a19","url":null,"abstract":"Instead of applying mechanical propellers for producing thrust in water vehicles, patent [1] proposed using a pulsed detonation hydrojet consisting of a pulsed detonation tube inserted into a water guide. It was implied that the pulsed detonation tube could periodically detonate a fuel oxidizer mixture and generate shock waves pushing water out of the guide and producing thrust. For e¨ective shock-to-water momentum transfer, it was proposed to increase water compressibility by saturating it with bubbles of a chemically inert or reactive gas. It was found in [2] that the optimal gas content required for the maximum shock-to-water momentum transfer was about 20 %(vol.). However, experiments and calculations in [2] were made for a single shock interacting with bubbly water, thus implying that this ¦nding was valid for relatively low frequencies of shock generation. The shock-to-water momentum transfer is obviously dependent of operation frequency as shock waves propagating in a compressible medium tend to merge with each other and each preceding shock wave changes the gas content ahead of the succeeding shock wave. The objective of this work was to study the e¨ect of shock generation frequency on the §ow pattern in the water guide and on the e©ciency of shock-to-water momentum transfer. The frequency of shock-wave pulses entering a column of bubbly water was about ∼ 7 kHz which is characteristic of continuous-detonation combustors rather than pulsed detonation tubes. Interaction of the wave package in the form of the high-frequency sequence of three shock waves with bubbly water (see the ¦gure) and the shock-to-water momentum transfer were studied experimentally. The wave package was generated by detonating the gaseous stoichiometric propane oxygen mixture in a detonation tube with three tube branches of di¨erent lengths submerged in a column of bubbly water with free surface. In the experiments, the initial gas content in water was varied from 2 to 16 %(vol.) at the average diameter of air bubbles 3 4 mm and shock wave velocity in bubbly water in the range of 40 to 180 m/s. Experiments showed that the use of high-frequency shock-wave pulses in a hydrojet is pointless because of the arising interference of pulses which worsens the momentum transfer: on the one hand, the waves penetrating water quickly merge, thus feeding each other and increasing the bubbly water velocity, but on the other hand, the initial gas content for each successive shock wave decreases and, accordingly, the e©ciency of the momentum transfer decreases. The maximum operation frequency of the pulsed detonation tube in the hydrojet was shown to be limited by 50 60 Hz.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129525647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ОПРЕДЕЛЕНИЕ ВРЕМЕН ИНДУКЦИИ И РЕАКЦИИ СМЕСЕЙ ВОДОРОДА С ВОЗДУХОМ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ 氢气在高温下与空气混合的时间和反应的定义
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a03
Е. А. Баранышин, Олег Глебович Пенязьков, К. Л. Севрук
{"title":"ОПРЕДЕЛЕНИЕ ВРЕМЕН ИНДУКЦИИ И РЕАКЦИИ СМЕСЕЙ ВОДОРОДА С ВОЗДУХОМ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ","authors":"Е. А. Баранышин, Олег Глебович Пенязьков, К. Л. Севрук","doi":"10.30826/icpcd13a03","DOIUrl":"https://doi.org/10.30826/icpcd13a03","url":null,"abstract":"Моделирование процессов горения в проточной части воздушно-реактивных двигателей при больших числах Маха полета требует знания кинетических особенностей поведения топлив при очень высоких температурах торможения потока. В этих условиях время индукции топливно-воздушной смеси становится сравнимым с временем ее реакции. Точное экспериментальное определение этих кинетических параметров позволяет проводить адекватные оценки габаритных параметров проточной части двигательной установки при выборе той или иной топливной смеси.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116107510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MULTIDIMENSIONAL NUMERICAL SIMULATION OF KEROSENE SPRAY FRAGMENTATION, VAPORIZATION, AND SELF-IGNITION IN AIR 煤油喷雾在空气中破碎、汽化和自燃的多维数值模拟
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a15
K. Byrdin, V. A. Smetanyuk, S. Frolov, I. Semenov
{"title":"MULTIDIMENSIONAL NUMERICAL SIMULATION OF KEROSENE SPRAY FRAGMENTATION, VAPORIZATION, AND SELF-IGNITION IN AIR","authors":"K. Byrdin, V. A. Smetanyuk, S. Frolov, I. Semenov","doi":"10.30826/icpcd13a15","DOIUrl":"https://doi.org/10.30826/icpcd13a15","url":null,"abstract":"The physical and mathematical models of droplet breakup [1] and evaporation [2] are thoroughly tested for single-component physical surrogates (n-decane and n-dodecane) of aviation kerosene. Also, the overall kinetic mechanisms of self-ignition and combustion of singlecomponent and 9-component chemical surrogates of aviation kerosene vapors are developed and thoroughly validated against available experimental data. The tested models, chosen surrogates, and validated kinetic mechanisms are then applied to the solution of the multidimensional problem of kerosene spray self-ignition in a con¦ned volume. For the droplet breakup model [1], the values of empirical coef- ¦cients inherent in transverse injection of kerosene spray into a hot air stream are determined. The evaporation model [2] is shown to be well applicable at gas pressures lower than the liquid critical pressure, while at supercritical pressures, the use of a real-gas equation of state is required. As chemical surrogates of kerosene vapors, a singlecomponent surrogate based on n-dodecane and a 9-component surrogate based on the blend of normal alkanes with the number of carbon atoms from 8 to 16 are selected. The volume fractions of n-alkanes in the blend are chosen in accordance with the amplitudes of carbon peaks in the chromatogram. The overall kinetic mechanisms of selfignition and combustion of the selected chemical surrogates are based on the ¦xed set of reactions, namely, the rate-limiting irreversible reaction of n-alkanes oxidation to CO and H2O followed by reversible water gas shift and water dissociation reactions and irreversible reactions of CO and H2 oxidation. Despite the set of reactions is ¦xed, the values of the kinetic parameters of the rate-limiting reaction for self-ignition and combustion are di¨erent because in self-ignition, the main role is played by chain branching reactions in the absence of external heat and mass sources, while in combustion, such sources exist due to huge gradients of temperature and active species concentrations. Comparison with available experimental data shows that the overall kinetic mechanisms are well applicable to the problems of selfignition and combustion of kerosene in wide ranges of temperature, pressure, and composition of kerosene air mixtures. The results of multidimensional calculations are compared with experimental data on self-ignition delays and spatial evolution of the reaction zone [3]. Calculations are shown to be in satisfactory agreement with the experimental data despite somewhat conditional de¦nitions of the selfignition delays and spatial domains occupied by the reaction zone.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122382682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PUFFING AND MICROEXPLOSION IN SECONDARY DROPLETS 二次液滴的膨化和微爆炸
ADVANCES IN DETONATION RESEARCH Pub Date : 2022-04-15 DOI: 10.30826/icpcd13a13
P. Strizhak, D. Antonov
{"title":"PUFFING AND MICROEXPLOSION IN SECONDARY DROPLETS","authors":"P. Strizhak, D. Antonov","doi":"10.30826/icpcd13a13","DOIUrl":"https://doi.org/10.30826/icpcd13a13","url":null,"abstract":"Secondary atomization of droplets (in the partial or full fragmentation regime) in multiphase and multicomponent fuel §ows is a promising technology that can minimize fuel consumption, improve the combustion dynamics, reduce anthropogenic emissions, stabilize fuel injection in a combustion chamber, and reduce the equipment wear [1, 2]. The most promising secondary atomization schemes involve droplet droplet collisions in intersecting fuel jets [3], droplet collisions with a solid surface in the form of walls, rings, meshes, and ledges [4], microexplosion, and pu©ng [5]. As a result of a microexplosion, the droplets of multiphase and multicomponent fuels break up to form an array of liquid fragments with a size of 1 100 μm [5]. The aim of this work is experimental research of pu©ng and microexplosion in secondary droplets. The number and radii of secondary fragments (child droplets) were analyzed by Shadow Photography (SP). Three approaches have been used to improve the accuracy of the experimental ¦ndings and to estimate their repeatability in a series of experiments. The measurements did not deviate by more than 5%. From the experiments conducted, the present authors managed to ¦nd the cause of signi¦- cant di¨erences in the characteristics of child droplets being formed in the course of microexplosion and pu©ng of two-liquid droplets for di¨erent formation regimes and identical heating conditions. After the research ¦ndings have been generalized, it became possible to determine the ranges of variation for the main parameters at which the maximum amount of child droplets with the required component composition could be obtained. In particular, the authorshave singled out the maps with multiple input parameters that can be used in the technologies of secondary fragmentation for the intensi¦cation of fuel mixing and combustion, puri¦cation of liquids, intensi¦cation of phase transitions, and heat exchange in power generation units.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130528503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信