S. Frolov, V. A. Smetanyuk, I. A. Sadykov, A. S. Silantiev, I. O. Shamshin, V. S. Aksenov, K. A. Avdeev, F. Frolov
{"title":"GASIFICATION OF GASEOUS, LIQUID, AND SOLID WASTES WITH DETONATION-BORN ULTRASUPERHEATED STEAM","authors":"S. Frolov, V. A. Smetanyuk, I. A. Sadykov, A. S. Silantiev, I. O. Shamshin, V. S. Aksenov, K. A. Avdeev, F. Frolov","doi":"10.30826/icpcd13a23","DOIUrl":"https://doi.org/10.30826/icpcd13a23","url":null,"abstract":"The pulsed detonation gun technology for gasi¦cation of organic waste with ultrasuperheated steam [1, 2] has been demonstrated experimentally for the ¦rst time. The organic waste converter consisted of a pulsed detonation gun and water-cooled spherical §ow reactor (Fig. 1). Experiments on methane conversion as well as on the gasification of liquid (waste machine oil) and solid (sawdust) waste by the high-temperature gaseous detonation products of methane oxygen mixture were performed. The pulsed detonation gun was operated at a relatively low frequency of f = 1 Hz which provided a timeaveraged mean temperature of detonation products in a spherical §ow reactor at a level of 1200 K at a time-averaged absolute pressure in the reactor slightly higher than P = 1 atm. The novel technology was shown to provide complete (100%) conversion of methane into syngas containing H2 and CO with a ratio of H2/CO ≈ 1.25 2. Gasi¦cation of liquid and solid wastes led to the production of syngas containing reactive components H2, CO, and CH4 in the total amounts of 80 and 65 %(vol.) dry basis (d. b.), respectively. The corresponding H2/CO ratios in the product syngas were 0.8 and 0.5. Overall, experiments on methane conversion as well as liquid and solid waste gasi¦cation showed that under the same conditions at f = 1 Hz and P = 1 atm, the composition of syngas in terms of H2 and CO almost did not depend on the type of feedstock (Fig. 2).","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116588025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SIMULATION OF INTERACTION OF HETEROGENEOUS DETONATION WITH POROUS INSERT","authors":"S. Lavruk, D. Tropin","doi":"10.30826/icpcd13a17","DOIUrl":"https://doi.org/10.30826/icpcd13a17","url":null,"abstract":"Investigation of the process of a detonation wave (DW) interaction with various obstacles is a fundamental problem. This problem is relevant from the point of view of reducing the destructive e¨ects of heterogeneous explosions in technological disasters and in the studies of the process of de§agration-to-detonation transition and in detonation engines development. In this study, the authors tried to model the heterogeneous detonation of stoichiometric mixture of aluminum particles in oxygen with semi-in¦nite porous insert as a grid of stationary cylinders. The model is based on the system of Euler Euler equations for describing the interaction of continua including the laws of mass, momentum, and energy conservation for each of the phases and components closed by equations of state, momentum exchange (drag forces), and heat transfer between gas, particles, and porous body. Aluminum combustion is described as a reduced reaction initiated after the critical temperature is reached assuming incomplete particle burning. It was assumed that the porous zone is a continuous medium in the form of a grid of stationary cylinders. During the numerical simulation, some §ow regimes were obtained similar to those that were previously obtained in the study of the interaction of detonation waves with inert particles as well as with water sprays. There are regimes with a reduced DW velocity and regime with detonation failure with separation of shock wave and reaction front. Figure compares the results of one- (1D) and two-dimensional (2D) simulations of the propagation regimes of heterogeneous detonation of 1-micrometer aluminum particles in oxygen in a porous zone with a 200-micrometer cylinders. It can be seen that the results are quite similar to each other.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"412 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124400822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NUMERICAL MODELING OF NEAR-WALL SUPERSONIC MIXING USING IDDES APPROACH","authors":"R. Solomatin, I. Semenov","doi":"10.30826/icpcd13a02","DOIUrl":"https://doi.org/10.30826/icpcd13a02","url":null,"abstract":"Current research is devoted to the development of mathematical model and computational algorithms of supersonic mixing based on hybrid IDDES (improved delayed detached eddy simulation) turbulence approach and Spalart Allmaras turbulence model. Di¨usion and heat conduction processes are also taken into account. Time integration is carried out with explicit-implicit method, giving the second-order predictor-corrector scheme in the explicit region. Parallel realization of GMRES-LU-SGS (generalized minimum residual lower-upper symmetric Gauss Seidel) method is developed for solving the system of governing equations [1].","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132536347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SIMULATION OF INTERACTION OF HOMOGENEOUS HYDROGEN AIR DETONATION WITH POROUS FILTERS","authors":"D. Tropin, K. Vyshegorodcev","doi":"10.30826/icpcd13a16","DOIUrl":"https://doi.org/10.30826/icpcd13a16","url":null,"abstract":"Explosions of combustible industrial gases and gas suspensions are one of the main causes of technological disasters. An example of the catastrophe is the explosion in the city of Kaohsiung, Taiwan, related with propylene leak in 2014. The explosion occurred during the transportation of propylene from the port to a chemical plant through a pipeline laid in underground utilities. One of the ways to prevent the catastrophic consequences of such incidents is to use inert components, for example, solid inert particles, porous ¦lters, or inert gas plugs to suppress detonation. In the present study, physical and mathematical modeling of the interaction of two-dimensional cellular detonation wave in hydrogen air mixture with inert porous ¦lters is performed. The model is based on the system of Euler equations describing the interaction of gas and ¦lters including the laws of mass, momentum, and energy conservation for each of the phases and components closed by equations of state, momentum exchange (drag forces), and heat transfer between gas and porous ¦lter. Hydrogen combustion is described by a reduced chemical kinetics. It was assumed that the porous ¦lter is a continuous medium in the form of a grid of stationary cylinders.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128471594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"О МЕХАНИЗМЕ АЭРОАКУСТИЧЕСКОЕО ИНИЦИИРОВАНИЯ ПУЛВСИРУЮЩЕЕО КВАЗИДЕТОНАЦИОННОЕО ЕОРЕНИЯ В ЭЖЕКТОРНОМ ПУЛВСИРУЮЩЕМ ВОЗДУШНО-РЕАКТИВНОМ ДВИЕАТЕЛЕ","authors":"К.В. Мигалин, А. К. Сиденко","doi":"10.30826/icpcd13a20","DOIUrl":"https://doi.org/10.30826/icpcd13a20","url":null,"abstract":"Сегодня известны два метода поддержания пульсирующего горения в пульсирующем воздушно-реактивном двигателе (ПуВРД): (1) акустический, он реализуется в условиях акустического резонанса газохода; (2) релаксационный, базируется на основе использования различного рода механических устройств пульсирующей подачи топлива или воздуха. К настоящему времени известно только о нескольких разработках детонационных двигателей, реализующих второй способ поддержания пульсирующего горения. Одна из них, прошедшая стадию бросковых испытаний, описана в [1]. Эти двигатели реализуют продольную детонацию в газоходе и требуют его большой длины. Авторами найден третий метод поддержания пульсирующего горения в бесклапанном ПуВРД, при котором возможен переход к редкому виду детонационного или квазидетонационного горения — сферической детонации. Такой метод поддержания пульсирующего горения возможен в двигателях, имеющих специфическую внутреннюю аэродинамику течения, формируемую специальной конструкцией газохода. Приведены результаты аэроакустических исследований газоходов малоизвестного типа двигателей — эжекторных двухконтурных ПуВРД (ЭДПуВРД). Показано, что конфигурация газохода с двойным изломом приводит к сложной вихревой структуре внутреннего течения, которая подвержена влиянию акустических колебаний [2]. Подбором частоты акустического резонанса газохода производится настройка на частоту собственных колебаний внутренних вихревых течений, чем достигается появление прецессии вихревого течения. Циклический выброс из нее продуктов сгорания, являясь мощным источником воспламенения, в свою очередь провоцирует переход к детонационному горению. В случае работы в режиме дефлаграционного горения с применением бензина А-76 или керосина РТ двигатели рассматриваемого типоразмера демонстрируют устойчивую работу в диапазоне скоростей до М = 1,5 и выше, развивая тягу 170–220 кГс. Удельная тяга по топливу при этом достигает 1500 с при весе двигателя 22–24 кг. Основные преимуществами ЭДПуВРД — простота конструкции и невысокая стоимость, что на фоне масштабного вырождения турбинных датчиков расхода турбореактивных двигателей в классе двигателей малых тяг расширяет нишу его возможного применения.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114031446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Frolov, V. Ivanov, I. O. Shamshin, V. S. Aksenov, M. Vovk, I. V. Mokrynskij, V. A. Bruskov, D. Igonkin, S. N. Moskvitin, A. Illarionov, E. Marchukov
{"title":"AFTERBURNER WITH CONTINUOUS DETONATION OF LIQUID FUEL","authors":"S. Frolov, V. Ivanov, I. O. Shamshin, V. S. Aksenov, M. Vovk, I. V. Mokrynskij, V. A. Bruskov, D. Igonkin, S. N. Moskvitin, A. Illarionov, E. Marchukov","doi":"10.30826/icpcd13a22","DOIUrl":"https://doi.org/10.30826/icpcd13a22","url":null,"abstract":"The results of a new series of test ¦res of a detonation afterburner as part of turbojet engine are presented. In contrast to previous tests with a sequential arrangement of turbojet and afterburner [1], the new series provides for gasdynamic separation of air§ows: air is supplied to the afterburner separately using an auxiliary power unit simulating the bypass air§ow in a turbofan engine (Fig. 1). The separation of air§ows made it possible to ensure stable operation of the combined power plant in di¨erent modes of operation of the turbojet engine when the afterburner was turned on. In test ¦res, a stable mode of spinning detonation of aviation kerosene with single detonation wave was registered with a characteristic rotation frequency of 2 kHz (Fig. 2) and the detonative combustion of kerosene in the afterburner did not a¨ect the operation of the turbojet engine.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"335 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132981130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. O. Shamshin, M. V. Kazachenko, S. Frolov, V. Basevich
{"title":"DEFLAGRATION-TO-DETONATION TRANSITION IN STOICHIOMETRIC BINARY HYDROCARBON (METHANE, PROPANE, ETHYLENE) HYDROGENBLENDS IN AIR","authors":"I. O. Shamshin, M. V. Kazachenko, S. Frolov, V. Basevich","doi":"10.30826/icpcd13a01","DOIUrl":"https://doi.org/10.30826/icpcd13a01","url":null,"abstract":"Systematic experimental studies of de§agration-to-detonation transition (DDT) in binary hydrocarbon (methane, propane, ethylene) hydrogen air mixtures of stoichiometric composition with hydrogen volume fraction xH2 varied from 0 to 1 are conducted at normal pressure and temperature conditions in a pulse-detonation tube of three geometrical con¦gurations: C1, C2, and C3 (Fig. 1). Contrary to expectations based on the well-known high reactivity of hydrogen, the measured dependences of the DDT run-up distance LDDT and time τDDT on xH2 are shown to be highly nonlinear [1 3]. Thus, in methane hydrogen air mixtures, with an increase in xH2 , the DDT run-up distance changes nonmonotonically: in the range 0.25 < xH2 < 0.65, the dependences LDDT(xH2 ) can have local maxima, i. e., the detonability of such fuel air mixtures deteriorates with the addition of hydrogen (Fig. 2a). In propane hydrogen airmixtures, the measured dependences of the DDT run-up distance appear to be nonlinear and nonmonotonic (in some cases): mixture detonability increases sharply only at relatively large hydrogen content (at xH2 > 0.7) (Fig. 2b). Finally, in ethylene hydrogen air mixtures, hydrogen addition to ethylene at 0 ≤ xH2 ≤ 0.7 results in no variation of mixture detonability in terms of DDT run-up distance (Fig. 2c). However, hydrogen addition to ethylene at xH2 > 0.7 results in a drastic increase of mixture detonability. Since various modi¦cations of tube design do not affect the character of the dependences, these e¨ects are attributed to the physicochemical properties of the mixtures. In general, based on the similarity of the experimental results for methane hydrogen air, propane hydrogen air, and ethylene hydrogen air mixtures obtained using the same experimental facilities and conditions, one can conclude that such unexpected dependences are caused by chemical and physical properties of hydrogen, namely, its temperature and pressure dependent reactivity in terms of the laminar §ame velocity, selfignition delay, etc., as well as its low molecular mass.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121048008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}