Aryo Sasmita, Lita ' Darmayanti, Iqbal Perdana Putra
{"title":"ANALISIS FENOMENA URBAN HEAT ISLAND BERDASARKAN TUTUPAN LAHAN DI KOTA PEKANBARU","authors":"Aryo Sasmita, Lita ' Darmayanti, Iqbal Perdana Putra","doi":"10.31172/jmg.v24i2.710","DOIUrl":"https://doi.org/10.31172/jmg.v24i2.710","url":null,"abstract":"Kota Pekanbaru sebagai ibukota Provinsi Riau memiliki aktivitas pembangunan yang tinggi seiring dengan meningkatnya kepadatan penduduk akibat urbanisasi, sehingga berakibat pada pada berkurangnya lahan vegetasi. Kondisi ini menyebabkan meningkatnya temperatur permukaan di Kota Pekanbaru terutama di daerah pusat kota dan memicu terjadinya fenomena Urban Heat Island (UHI). Penelitian ini bertujuan untuk mengetahui sebaran temperatur permukaan dan mengidentifikasi fenomena UHI di Kota Pekanbaru sehubungan dengan perubahan tutupan lahan menggunakan metode Normalized Difference Vegetation Index (NDVI) dari tahun 2013-2018. Ekstraksi temperatur permukaan dan tutupan lahan diperoleh dari citra Landsat 8. Hasil penelitian menunjukkan Kota Pekanbaru sudah mengalami fenomena UHI sejak tahun 2013, sedangkan sebaran temperatur permukaan Kota Pekanbaru tahun 2013-2015 didominasi oleh ketogori temperatur tinggi (33-35oC), tahun 2016-2017 didominasi oleh kategori temperatur sedang (30-33oC), dan tahun 2018 kembali didominasi oleh temperatur tinggi. Untuk tren perubahan tutupan lahan di Kota Pekanbaru dari tahun 2013-2018 kategori hutan campuran relatif selalu menduduki urutan pertama dengan persentase lebih dari ≥50%, hanya citra tahun 2013 yang berbeda, dimana mayoritas tutupan lahan yang paling luas pada tahun 2013 adalah kategori tutupan padang rumput dan semak belukar, hal ini dikarenakan adanya gangguan atmosferik pada daerah yang memiliki kategori tutupan lahan hutan campuran, sehingga kategori tutupan lahan jenis hutan campuran teridentifikasi lebih sedikit dibandingkan dengan kategori padang rumput dan semak belukar.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":" 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prekursor MJO-Crossing (MJO-C) dan MJO-Blocking (MJO-B) di Benua Maritim Berdasarkan Transpor Kelembapan","authors":"Akhmad Fahim, Nurjanna Joko Trilaksono","doi":"10.31172/jmg.v24i2.906","DOIUrl":"https://doi.org/10.31172/jmg.v24i2.906","url":null,"abstract":"Penelitian mengenai propagasi MJO yang terhalang saat melewati Benua Maritim merupakan permasalahan yang kompleks. Penelitian kali ini bermaksud untuk mengetahui prekursor kejadian MJO-Crossing (MJO-C) dan MJO-Blocking (MJO-B) ditinjau dari analisis transpor kelembapan. Analisis Hovmöller pada kejadian MJO-C dan MJO-B dilakukan menggunakan data curah hujan satelit TRMM (3B42v7) periode bulan ONDJFM tahun 1998-2015 untuk melihat karakteristik propagasi MJO-C dan MJO-B. Perbedaan propagasi MJO-C dan MJO-B, diinvestigasi lebih lanjut menggunakan data kelembapan spesifik dan medan angin ERA-Interim ECMWF untuk mengetahui kondisi sumber pasokan uap air serta struktur vertikal kelembapan spesifik MJO-C dan MJO-B. Selanjutnya, dilakukan analisis lebih rinci dengan melihat pola divergensi angin di ketinggian 700 hPa. Hasil penelitian menemukan bahwa pada kondisi prekursor tepatnya periode 15 hari hingga 5 hari sebelum kejadian MJO (day -15 hingga day -5), terdapat pelemahan suplai kelembapan pada kejadian MJO-B yang disebabkan oleh adanya anomali kering (dry anomaly) yang berpropagasi ke barat dari Samudra Pasifik menuju wilayah Benua Maritim Indonesia (BMI). Kondisi anomali kering ini bercampur dengan anomali lembap MJO (moist anomaly) yang berakibat pada pengurangan intensitas kelembapan sehingga menghambat propagasi MJO melintasi wilayah BMI. Fenomena anomali kering yang berpropagasi ke barat mengindikasikan adanya pengaruh gelombang Equatorial Rossby (ER) terhadap propagasi MJO melintasi BMI.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"66 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140235160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MEMBANGKITKAN DATA CUACA HARIAN DARI DATA BULANAN: STUDI KASUS SULAWESI UTARA","authors":"Eko Supriyadi","doi":"10.31172/jmg.v24i2.718","DOIUrl":"https://doi.org/10.31172/jmg.v24i2.718","url":null,"abstract":"Permasalahan utama ketika berhadapan dengan data cuaca adalah keterbatasan data harian. Paper ini menjelaskan teknik sederhana membangkitkan data cuaca harian dari data bulanan memanfaatkan pengamatan sinop dari Stasiun Klimatologi Minahasa Utara (1989-2014). Metode utama penelitian ini memanfaatkan fungsi logit, Fourier, dan gamma. Diperoleh hasil bahwa curah hujan hasil bangkitan menunjukan pola serupa dengan observasi serta dari uji statistika menunjukkan hasil tidak berbeda nyata (p<0.000), akan tetapi korelasi yang dihasilkan bernilai rendah (0.33–0.49). Berdasarkan pembagian musim, baik curah hujan bangkitan maupun observasi, bernilai tinggi pada musim DJF lalu menurun di MAM dan JJA kemudian naik di musim SON. Selain itu terdapat perbedaan curah hujan bangkitan dengan observasi disebabkan penggunaan bilangan acak sebaran uniform yang cenderung mengabaikan kekhasan waktu. Selanjutnya unsur cuaca suhu dan RH menghasilkan nilai bangkitan harian dari bulanan yang lebih rapat dibandingkan observasi dengan korelasi >0.8. Hal ini disebabkan fungsi Fourier yang digunakan tidak memiliki faktor keragaman lapangan.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140235212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Karyono, I. Syafri, Abdurrokhim Abdurrokhim, Masturyono Masturyono, Supriyanto Rohadi, Januar Arifin, A. Sudrajat, Adriano Mazzini, Soffian Hadi, Agustya Agustya
{"title":"KAJIAN KERENTANAN TANAH BERDASARKAN ANALISIS HVSR DI DAERAH SEMBURAN LUMPUR SIDOARJO DAN SEKITARNYA, JAWA TIMUR, INDONESIA","authors":"K. Karyono, I. Syafri, Abdurrokhim Abdurrokhim, Masturyono Masturyono, Supriyanto Rohadi, Januar Arifin, A. Sudrajat, Adriano Mazzini, Soffian Hadi, Agustya Agustya","doi":"10.31172/JMG.V17I1.398","DOIUrl":"https://doi.org/10.31172/JMG.V17I1.398","url":null,"abstract":"Aluvium merupakan fitur geologi yang memiliki sifat rentan terhadap pengaruh gempabumi. Daerah Porong dan sekitarnya tempat semburan Lumpur Sidoarjo (Lusi) terjadi merupakan daerah dataran yang ditutupi oleh endapan aluvium Delta Brantas, sehingga daerah ini merupakan zona lemah yang rentan terhadap pengaruh gempabumi. Hal ini diperkuat dengan adanya sesar Watukosek di daerah tersebut. Dengan tujuan untuk membuktikan hal tersebut maka dilakukan observasi seismik dengan cara memasang 71 stasiun pengamat gempabumi temporal yang tersebar di daerah Sidoarjo dan sekitarnya. Hasil analisis Horizontal Vertical Spectral Ratio (HVSR) terhadap data seismik diperoleh sebaran frekuensi natural bawah permukaan lebih rendah di daerah Lusi yaitu 0,4Hz. Hasil analisis juga mengungkap bahwa di daerah tersebut mempunyai amplifikasi tanah sebesar 5,2 dan tingkat kerentanan tanah sebesar 56, lebih tinggi dibandingkan dengan daerah lain di sekitarnya. Karena letaknya di zona lemah, maka berimplikasi bahwa Lusi menjadi sensitif terhadap gangguan luar misalnya dampak kejadian gempabumi menjadi lebih besar pada daerah ini. Alluvium is a geological feature characterized by high risk vulnerability influenced by the earthquakes. Porong and surrounding areas where the eruption of Lumpur Sidoarjo’s (Lusi) occurred are areas covered by alluvium sediment of Brantas Delta, as consequences this area is a weak zone characterized by high risk vulnerability as well. This is also supported by the present of Watukosek fault system in this area. To proved, we deployed 71 temporary seismic stations distributed in and around Sidoarjo area. The Horizontal Vertical Spectral Ratio (HVSR) analysis revealed that the natural frequency in Lusi area is about 0.4Hz, this is lower than other part areas. The analysis also revealed that this area has soil amplification about 5.2 and soil vulnerability index about 56, these are higher compared with other part areas. These results support that this area is a weak zone. Because of its location in a weak zone, this implies that Lusi became sensitive to external perturbation for example the earthquake events would have greater impact to this area.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"84 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91394775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"THERMAL STRESS PROJECTION BASED ON TEMPERATURE-HUMIDITY INDEX (THI) UNDER CLIMATE CHANGE SCENARIO","authors":"Fatkhurokhman Fauzi, Iqbal Kharisudin, Rochdi Wasono, Tiani Wahyu Utami, Iis Widya Harmoko","doi":"10.31172/jmg.v24i1.867","DOIUrl":"https://doi.org/10.31172/jmg.v24i1.867","url":null,"abstract":"The degradation of green open spaces and the phenomenon of deforestation in Indonesia has increased discomfort in the region. Furthermore, if allowed to continue, the increase in temperature caused by greenhouse gases worsens the situation. Increased temperature and reduced air humidity are related to thermal stress, affecting human comfort and health. Thermal stress is measured based on the Temperature Humidity Index (THI), which calculates temperature and relative humidity variables. This study analyses THI projections under climate change scenarios RCP4.5 and RCP8.5. This study uses statistical downscaling and bias correction of Quantile Delta Mapping (QDM) to equalize the local climate. This study is divided into four 20-year periods from 2021 to 2100 to evaluate THI changes in future projections. Based on the study results, it is known that from 2041-2060, several big cities in Indonesia experienced an increase in THI and were included in the category of 50% of the population feeling uncomfortable. THI increased in the third and fourth periods. Areas that experienced a significant increase in THI were urban areas that lacked green open land and were densely populated. Surabaya City and Madura Island are the areas with the highest THI index.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"157 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136349074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WRF-MODEL PARAMETERIZATION TEST FOR PREDICTING EXTREME HEAVY RAINFALL EVENT OVER KETAPANG REGENCY","authors":"Fazrul Rafsanjani Sadarang","doi":"10.31172/jmg.v24i1.924","DOIUrl":"https://doi.org/10.31172/jmg.v24i1.924","url":null,"abstract":"Heavy rains that cause floods and landslides in the Ketapang Regency can be predicted by utilizing the weather research and forecast (WRF) model. The WRF model used, of course, needs to be configured to represent the conditions that exist in Ketapang Regency. This study evaluates the combination of cumulus and microphysics parameterization, producing the best prediction of 24-hour accumulated rainfall. The combination of cumulus and microphysics parameterization tested as many as 24 schemes which later will be obtained which combination can produce the best prediction of rainfall accumulation with the comparison of rainfall measured at the Observation Station of the Meteorology, Climatology, and Geophysics Agency (BMKG) in Ketapang Regency. The results show that combining the KF-Scheme cumulus parameterization scheme and the Kessler-Scheme microphysics can better predict 24-hour accumulated rainfall than other tested parameterization schemes. This result is based on the root mean square error (RMSE), which shows that this combination scheme produces the smallest value and large correlation coefficient (CORR). From this research, it can also be seen that cumulus parameterization has a more dominant role than microphysics parameterization.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135135250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OVERSHOOTING TOP OF CONVECTIVE CLOUD IN EXTREME WEATHER EVENTS OVER JAVA REGION BASED ON VISUAL IDENTIFICATION OF HIMAWARI 8 IMAGERY","authors":"Bony Septian Pandjaitan, Akhmad Faqih, Furqon Alfahmi, Perdinan .","doi":"10.31172/jmg.v24i1.967","DOIUrl":"https://doi.org/10.31172/jmg.v24i1.967","url":null,"abstract":"Overshooting top (OT) in convective clouds is an essential feature in extreme weather nowcasting performed by weather forecasters to represent the core location of the severe region of the convective cloud. In addition, we can estimate the location of extreme weather events by utilising OT climatology. Unfortunately, it cannot be realised in tropical Indonesia, especially on Java Island at present, because there still needs to be more research on the presence of OT in extreme weather events. This research aims to study the presence of OT in extreme weather events on Java Island using extreme weather reports and the Himawari 8 satellite data. We detect the presence or absence of OT patterns at the location of the extreme weather event with Visual identification by using a visible channel (0.64 μm) with a spatial resolution of 500 m and sandwich products. We found that about 87% of extreme weather occurred accompanied by the appearance of OT patterns from convective clouds. A parallax effect of Himawari 8 caused the detected OT location in the southwest direction of the actual location. Extreme weather events accompanied by the OT feature of convective clouds most often occur in the transitional period of the rainy to dry season (MAM) and the rainy season (DJF). Meanwhile, extreme weather events rarely occur during the dry season (JJA). Extreme weather events accompanied by OT often occur from midday to late afternoon. OT in this study has a diameter between 2-15 km during extreme weather events. A time lag between the appearance of OT and extreme weather events in Java Island gives us opportunities for approximating and nowcasting the extreme weather events.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135135085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akhmad Faqih, Alif Akbar Syafrianno, Supari Supari, Rini Hidayati
{"title":"EVALUATION OF THE CORDEX-SEA MODELS PERFORMANCE IN SIMULATING CHARACTERISTICS OF WET SEASON IN INDONESIA","authors":"Akhmad Faqih, Alif Akbar Syafrianno, Supari Supari, Rini Hidayati","doi":"10.31172/jmg.v24i1.965","DOIUrl":"https://doi.org/10.31172/jmg.v24i1.965","url":null,"abstract":"Indonesia's climate is known to be challenging to adequately simulate by climate models because of the complexity of the weather system and sea-land distribution. Model evaluation is essential to measure confidence in the model results. This study evaluates the performance of the CORDEX-SEA model in simulating monthly rainfall patterns and the characteristics of seasonal rainfall, i.e., pattern, timing, length, and intensity, in Indonesia during 1986-2005. The performance of weighted (WMME) and unweighted ensemble methods are also calculated. Corrected CHIRPS data with similar seasonal patterns with point observation data is used as reference data to evaluate models. Percentage of the agreement of seasonal patterns between models and observation, FAR, and POD values were used to assess the model's ability to simulate seasonal patterns. WMME has the best seasonal patterns agreement with observation, 67% of all grids. The best model performance is shown by monsoonal patterns, with a POD value of 83% by WMME. Otherwise, all models could not describe an anti-monsoonal pattern, with a small POD (0-33%) and a high FAR (60-100%). In simulating the wet season on climatological, annual, and annual mean scales, both MMEs have similar performance and are better than individual models, with WMME performing best. However, on an annual scale, the yearly wet season produced by all models tends to approach its climatology value, making it less reliable in extreme years. Most models have higher daily and monthly rainfall than observation. In conclusion, the weighted ensemble method describes Indonesia's rainy season well, thus providing a reasonable basis for further research in climate projection analysis.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135135254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rido Dwi Ismanto, Indah Prasasti, Hana Listi Fitriana
{"title":"COMPARISON ANALYSIS OF HIMAWARI 8, CHIRPS AND GSMaP DATA TO DETECT RAIN IN INDONESIA","authors":"Rido Dwi Ismanto, Indah Prasasti, Hana Listi Fitriana","doi":"10.31172/jmg.v24i1.863","DOIUrl":"https://doi.org/10.31172/jmg.v24i1.863","url":null,"abstract":"The need for rainfall data, especially for areas where the number of observation stations is not very close, is very important for local climate analysis activities. This data need can be met, one of which is from remote sensing data, such as Himawari 8. The Himawari 8 rainfall data are data derived using the INSAT Multi-Spectral Rainfall Algorithm (IMSRA) method based on the infrared channel on the Himawari 8 satellite. However, research on the IMSRA method was carried out using a case study of a region in India. Thus, validation is needed to determine the ability of Himawari 8 rainfall data to detect rain in Indonesia. The data used for comparison are CHIRPS and GSMaP rainfall data. In addition, BMKG rainfall data are used as benchmark data. The technique used for validation is using the Contingency Table method. The results of the validation show that the rain detection ability for Himawari 8 rainfall data is relatively good, namely 66% for 2019 and 85% for 2020. In addition, the ability to detect rain using Himawari 8 rainfall data is quite good compared to the ability to detect rain using CHIRPS rainfall data and GSMaP rainfall data.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135135257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STRESS ANALYSIS AND CHARACTERISTICS DUE TO THE SOUTH JAVA EARTHQUAKE, APRIL 10, 2021","authors":"Rahmat Setyo Yuliatmoko, Sulastri Sulastri","doi":"10.31172/jmg.v24i1.770","DOIUrl":"https://doi.org/10.31172/jmg.v24i1.770","url":null,"abstract":"The April 10, 2021, earthquake in the south of East Java was classified as destructive. The secondary impact of this earthquake was quite significant. Many houses collapsed, and not a few casualties. This earthquake is unique because usually, destructive earthquakes occur at shallow depths, but earthquakes with a magnitude of 6.1 are classified as medium-depth earthquakes at sea. The earthquake in the south of East Java is classified as an intraplate earthquake because it is located on the continental plate, not in the plate contact area. The question is whether the damage that occurred to the building was purely due to the magnitude of the stress released by the earthquake or whether there were other factors. This study uses seismogram data for the earthquake south of East Java on April 10, 2021, with a radius (∆) of 300-1000 recorded at MEEK, MORW, and ARMA stations in Australia. It calculates the amount of stress based on the stress drop, while the stress column determines the stress mechanism. Calculation of stress drop from the source spectrum is obtained by the deconvolution method, namely the seismogram component separation technique in the form of Source (f), Path (f), Site (f), and Instrument (f). The analysis of the observed displacement spectrum used the Nelder Mead Simplex nonlinear inversion method. Meanwhile, the Stress Columb calculation was obtained using the Columb 3.3 program from the United States Geological Survey (USGS). The result of this research is that the stress drop value is 1.69 MPa, with the type of focus mechanism being a thrust fault in the sea. The earthquake in the south of East Java was caused by rock activity in the intraplate. The value of the stress drop is more significant when compared to the subduction contact area. This area is of intraplate rock with various variations, and earthquakes are rare. This study aims to analyze the stress, both the magnitude of the stress drop and the mechanism of the column stress results, so that the stress caused by the earthquake can be known and why the earthquake in the south of East Java is destructive. The quake in Southeast Java is classified as dangerous, not because of the magnitude of the stress generated or its mechanism. The damage was due to the amplification of earthquake waves in the building. The injury occurred because most of the buildings were built on soft soil, especially in several areas in East Java, such as Lumajang, Pasuruan, Trenggalek, Probolinggo, Ponorogo, Jember, Tulunggagung, Nganjuk, Pacitan, and several urban areas, namely Blitar, Kediri, Malang, and Stone. So, there is a need for earthquake disaster mitigation, especially in densely populated areas that live on soft soil. This mitigation effort is to minimize the occurrence of casualties by building buildings according to earthquake-resistant standards and avoiding development in the regions that have the potential for amplification of earthquake waves.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134932306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}